Suppr超能文献

使用具有多核 CPU 和通用 GPU 的个人计算机对心电图进行计算机模拟的并行化计算。

Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

机构信息

Biomedical Information Technology Lab, The University of Aizu, Uegami 90, Tsuruga, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan.

出版信息

Comput Methods Programs Biomed. 2010 Oct;100(1):87-96. doi: 10.1016/j.cmpb.2010.06.015. Epub 2010 Jul 31.

Abstract

Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies.

摘要

生物计算,如心电建模和模拟,通常需要高性能的计算环境。本文介绍了一种在个人计算机环境中使用 Intel CPU 的 Core (TM) 2 Quad Q6600 和 GPU 的 Geforce 8800GT 进行心电图 (ECG) 计算机模拟的并行计算实现,使用 OpenMP 和 CUDA 进行软件支持。在三种并行化设备设置中进行了测试:(a) 没有通用 GPU 的四核 CPU,(b) 带有通用 GPU 的 1 个 CPU 核,以及 (c) 四核 CPU 加通用 GPU。为了有效地利用多核 CPU 和通用 GPU,开发了一种基于负载预测的动态调度算法,并将其应用于设置 (c)。在具有 1600 个时间步长的模拟中,与串行计算相比,并行计算的加速比在设置 (a) 中为 3.9,在设置 (b) 中为 16.8,在设置 (c) 中为 20.0。本研究表明,当前具有多核 CPU 和通用 GPU 的个人计算机为生物建模和模拟研究中的并行计算提供了良好的环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验