Suppr超能文献

通过整合基因组背景和通量收敛模式分析来预测代谢通量。

Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.

机构信息

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 305-701, Republic of Korea.

出版信息

Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14931-6. doi: 10.1073/pnas.1003740107. Epub 2010 Aug 2.

Abstract

Flux balance analysis (FBA) of a genome-scale metabolic model allows calculation of intracellular fluxes by optimizing an objective function, such as maximization of cell growth, under given constraints, and has found numerous applications in the field of systems biology and biotechnology. Due to the underdetermined nature of the system, however, it has limitations such as inaccurate prediction of fluxes and existence of multiple solutions for an optimal objective value. Here, we report a strategy for accurate prediction of metabolic fluxes by FBA combined with systematic and condition-independent constraints that restrict the achievable flux ranges of grouped reactions by genomic context and flux-converging pattern analyses. Analyses of three types of genomic contexts, conserved genomic neighborhood, gene fusion events, and co-occurrence of genes across multiple organisms, were performed to suggest a group of fluxes that are likely on or off simultaneously. The flux ranges of these grouped reactions were constrained by flux-converging pattern analysis. FBA of the Escherichia coli genome-scale metabolic model was carried out under several different genotypic (pykF, zwf, ppc, and sucA mutants) and environmental (altered carbon source) conditions by applying these constraints, which resulted in flux values that were in good agreement with the experimentally measured (13)C-based fluxes. Thus, this strategy will be useful for accurately predicting the intracellular fluxes of large metabolic networks when their experimental determination is difficult.

摘要

通量平衡分析(FBA)是一种基于基因组尺度代谢模型的方法,可以通过优化目标函数来计算细胞内的通量,目标函数可以是最大化细胞生长等,这种方法在系统生物学和生物技术领域得到了广泛应用。然而,由于系统的欠定性,它存在一些局限性,例如通量预测不准确和最优目标值存在多个解。在这里,我们报告了一种策略,通过 FBA 结合系统的、与条件无关的约束来准确预测代谢通量,这些约束通过基因组上下文和通量收敛模式分析来限制分组反应的可实现通量范围。我们对三种类型的基因组上下文(保守基因组邻居、基因融合事件和多个生物体中基因的共存)进行了分析,以提出一组可能同时开启或关闭的通量。通过通量收敛模式分析来限制这些分组反应的通量范围。通过应用这些约束条件,在几种不同的基因型(pykF、zwf、ppc 和 sucA 突变体)和环境(改变碳源)条件下对大肠杆菌基因组尺度代谢模型进行了 FBA,结果得到的通量值与实验测量的基于 13C 的通量非常吻合。因此,当难以确定大型代谢网络的细胞内通量时,这种策略将有助于准确预测其通量。

相似文献

1
Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14931-6. doi: 10.1073/pnas.1003740107. Epub 2010 Aug 2.
2
A metabolite-centric view on flux distributions in genome-scale metabolic models.
BMC Syst Biol. 2013 Apr 12;7:33. doi: 10.1186/1752-0509-7-33.
3
Flux imbalance analysis and the sensitivity of cellular growth to changes in metabolite pools.
PLoS Comput Biol. 2013;9(8):e1003195. doi: 10.1371/journal.pcbi.1003195. Epub 2013 Aug 29.
4
Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
PLoS Comput Biol. 2019 May 13;15(5):e1007036. doi: 10.1371/journal.pcbi.1007036. eCollection 2019 May.
5
Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium.
J Biotechnol. 2012 Sep 15;161(1):1-13. doi: 10.1016/j.jbiotec.2012.04.010. Epub 2012 May 26.
7
Incorporating metabolic flux ratios into constraint-based flux analysis by using artificial metabolites and converging ratio determinants.
J Biotechnol. 2007 May 10;129(4):696-705. doi: 10.1016/j.jbiotec.2007.02.026. Epub 2007 Mar 4.
8
Predicting internal cell fluxes at sub-optimal growth.
BMC Syst Biol. 2015 Apr 3;9:18. doi: 10.1186/s12918-015-0153-3.
9
Flux-coupled genes and their use in metabolic flux analysis.
Biotechnol J. 2013 Sep;8(9):1035-42. doi: 10.1002/biot.201200279. Epub 2013 Mar 21.
10
Genome-Scale C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae.
Methods Mol Biol. 2019;1859:317-345. doi: 10.1007/978-1-4939-8757-3_19.

引用本文的文献

1
Metabolomics and modelling approaches for systems metabolic engineering.
Metab Eng Commun. 2022 Oct 15;15:e00209. doi: 10.1016/j.mec.2022.e00209. eCollection 2022 Dec.
2
Physicochemical and metabolic constraints for thermodynamics-based stoichiometric modelling under mesophilic growth conditions.
PLoS Comput Biol. 2021 Jan 25;17(1):e1007694. doi: 10.1371/journal.pcbi.1007694. eCollection 2021 Jan.
4
Metabolic dynamics restricted by conserved carriers: Jamming and feedback.
PLoS Comput Biol. 2017 Nov 7;13(11):e1005847. doi: 10.1371/journal.pcbi.1005847. eCollection 2017 Nov.
6
Recent advances in elementary flux modes and yield space analysis as useful tools in metabolic network studies.
World J Microbiol Biotechnol. 2015 Sep;31(9):1315-28. doi: 10.1007/s11274-015-1887-1. Epub 2015 Jun 12.
7
Integration of a constraint-based metabolic model of Brassica napus developing seeds with (13)C-metabolic flux analysis.
Front Plant Sci. 2014 Dec 19;5:724. doi: 10.3389/fpls.2014.00724. eCollection 2014.
8
Synthetic biology outside the cell: linking computational tools to cell-free systems.
Front Bioeng Biotechnol. 2014 Dec 9;2:66. doi: 10.3389/fbioe.2014.00066. eCollection 2014.
9
Optimality principles in the regulation of metabolic networks.
Metabolites. 2012 Aug 29;2(3):529-52. doi: 10.3390/metabo2030529.
10
Study of metabolic network of Cupriavidus necator DSM 545 growing on glycerol by applying elementary flux modes and yield space analysis.
J Ind Microbiol Biotechnol. 2014 Jun;41(6):913-30. doi: 10.1007/s10295-014-1439-y. Epub 2014 Apr 9.

本文引用的文献

1
The primary transcriptome of the major human pathogen Helicobacter pylori.
Nature. 2010 Mar 11;464(7286):250-5. doi: 10.1038/nature08756. Epub 2010 Feb 17.
2
Transcriptome complexity in a genome-reduced bacterium.
Science. 2009 Nov 27;326(5957):1268-71. doi: 10.1126/science.1176951.
3
The transcription unit architecture of the Escherichia coli genome.
Nat Biotechnol. 2009 Nov;27(11):1043-9. doi: 10.1038/nbt.1582. Epub 2009 Nov 1.
4
Constraints-based genome-scale metabolic simulation for systems metabolic engineering.
Biotechnol Adv. 2009 Nov-Dec;27(6):979-988. doi: 10.1016/j.biotechadv.2009.05.019. Epub 2009 May 20.
7
Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology.
PLoS Comput Biol. 2008 Oct;4(10):e1000210. doi: 10.1371/journal.pcbi.1000210. Epub 2008 Oct 31.
8
STRING 8--a global view on proteins and their functional interactions in 630 organisms.
Nucleic Acids Res. 2009 Jan;37(Database issue):D412-6. doi: 10.1093/nar/gkn760. Epub 2008 Oct 21.
9
Towards systems metabolic engineering of microorganisms for amino acid production.
Curr Opin Biotechnol. 2008 Oct;19(5):454-60. doi: 10.1016/j.copbio.2008.08.007. Epub 2008 Sep 6.
10
Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli.
Bioinformatics. 2008 Sep 15;24(18):2044-50. doi: 10.1093/bioinformatics/btn352. Epub 2008 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验