Suppr超能文献

无泵微流控:在纸网络中重新设计 T 型传感器和 H 型滤波器。

Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks.

机构信息

Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195, USA.

出版信息

Lab Chip. 2010 Oct 21;10(20):2659-65. doi: 10.1039/c004821f. Epub 2010 Aug 3.

Abstract

Conventional microfluidic devices typically require highly precise pumps or pneumatic control systems, which add considerable cost and the requirement for power. These restrictions have limited the adoption of microfluidic technologies for point-of-care applications. Paper networks provide an extremely low-cost and pumpless alternative to conventional microfluidic devices by generating fluid transport through capillarity. We revisit well-known microfluidic devices for hydrodynamic focusing, sized-based extraction of molecules from complex mixtures, micromixing, and dilution, and demonstrate that paper-based devices can replace their expensive conventional microfluidic counterparts.

摘要

传统的微流控设备通常需要高度精确的泵或气动控制系统,这增加了相当大的成本和电力需求。这些限制限制了微流控技术在即时护理应用中的采用。纸网络通过毛细作用产生流体传输,为传统微流控设备提供了一种极其低成本和无泵的替代方案。我们重新审视了用于流体动力学聚焦、从复杂混合物中提取分子的基于尺寸的萃取、微混合和稀释的知名微流控设备,并证明基于纸张的设备可以替代昂贵的传统微流控设备。

相似文献

1
Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks.
Lab Chip. 2010 Oct 21;10(20):2659-65. doi: 10.1039/c004821f. Epub 2010 Aug 3.
2
Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
Biosens Bioelectron. 2006 Feb 15;21(8):1468-75. doi: 10.1016/j.bios.2005.06.005. Epub 2005 Aug 11.
3
An investigation of paper based microfluidic devices for size based separation and extraction applications.
J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Sep 1;1000:41-8. doi: 10.1016/j.jchromb.2015.07.010. Epub 2015 Jul 13.
4
High performance microfluidic capillary electrophoresis devices.
Biomed Microdevices. 2007 Jun;9(3):405-12. doi: 10.1007/s10544-007-9049-3.
5
Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump.
Biosens Bioelectron. 2004 Jul 30;20(1):115-21. doi: 10.1016/j.bios.2003.10.018.
6
Electroosmotic mixing in microchannels.
Lab Chip. 2004 Dec;4(6):558-62. doi: 10.1039/b408875a. Epub 2004 Nov 4.
7
Optimization of stripline-based microfluidic chips for high-resolution NMR.
J Magn Reson. 2009 Dec;201(2):175-85. doi: 10.1016/j.jmr.2009.09.007. Epub 2009 Sep 9.
8
Macro-to-micro interfaces for microfluidic devices.
Lab Chip. 2004 Dec;4(6):526-33. doi: 10.1039/b410720a. Epub 2004 Nov 10.
9
Hydrodynamic focusing of conducting fluids for conductivity-based biosensors.
Biosens Bioelectron. 2010 Feb 15;25(6):1363-9. doi: 10.1016/j.bios.2009.10.033. Epub 2009 Oct 30.
10
Optically fabricated three dimensional nanofluidic mixers for microfluidic devices.
Nano Lett. 2005 Jul;5(7):1351-6. doi: 10.1021/nl050606r.

引用本文的文献

1
Challenges in the development of microfluidic paper-based analytical devices (μPADs).
Mikrochim Acta. 2025 Jun 24;192(7):451. doi: 10.1007/s00604-025-07270-2.
2
Self-Tuning Reaction Conditioning of a Paper-Based Electrochemical Biosensor for Acetaldehyde Detection.
ACS Omega. 2025 Apr 7;10(14):13854-13859. doi: 10.1021/acsomega.4c07169. eCollection 2025 Apr 15.
3
Detection of inertial effects in capillary flows in open and closed channels.
bioRxiv. 2025 Feb 27:2025.02.24.639324. doi: 10.1101/2025.02.24.639324.
4
Vibration mixing for enhanced paper-based recombinase polymerase amplification.
Lab Chip. 2024 Oct 9;24(20):4879-4891. doi: 10.1039/d4lc00592a.
6
Limit-Defying μ-Total Analysis System: Achieving Part-Per-Quadrillion Sensitivity on a Hierarchical Optofluidic SERS Sensor.
ACS Omega. 2023 May 1;8(19):17151-17158. doi: 10.1021/acsomega.3c01519. eCollection 2023 May 16.
7
Nitrite enhanced detection from saliva by simple geometrical modifications of paper-based micromixers.
Microfluid Nanofluidics. 2022;26(11):88. doi: 10.1007/s10404-022-02596-2. Epub 2022 Oct 12.
8
Disposable paper-based microfluidics for fertility testing.
iScience. 2022 Aug 18;25(9):104986. doi: 10.1016/j.isci.2022.104986. eCollection 2022 Sep 16.
9
Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination.
Sensors (Basel). 2022 Aug 19;22(16):6232. doi: 10.3390/s22166232.
10
Configurable 2D nano-flows in mesoporous films using paper patches.
RSC Adv. 2018 Feb 8;8(12):6414-6418. doi: 10.1039/c7ra13691a. eCollection 2018 Feb 6.

本文引用的文献

1
Transport in two-dimensional paper networks.
Microfluid Nanofluidics. 2011 Jan;10(1):29-35. doi: 10.1007/s10404-010-0643-y.
2
Chemical signal amplification in two-dimensional paper networks.
Sens Actuators B Chem. 2010 Aug 6;149(1):325-328. doi: 10.1016/j.snb.2010.06.024.
3
Visualization and measurement of flow in two-dimensional paper networks.
Lab Chip. 2010 Oct 7;10(19):2614-7. doi: 10.1039/c004766j. Epub 2010 Jul 30.
4
Multiplex lateral-flow test strips fabricated by two-dimensional shaping.
ACS Appl Mater Interfaces. 2009 Jan;1(1):124-9. doi: 10.1021/am800043z.
5
Controlled reagent transport in disposable 2D paper networks.
Lab Chip. 2010 Apr 7;10(7):918-20. doi: 10.1039/b919614e. Epub 2010 Jan 15.
6
Paper microzone plates.
Anal Chem. 2009 Aug 1;81(15):5990-8. doi: 10.1021/ac900847g.
7
Three-dimensional microfluidic devices fabricated in layered paper and tape.
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19606-11. doi: 10.1073/pnas.0810903105. Epub 2008 Dec 8.
8
FLASH: a rapid method for prototyping paper-based microfluidic devices.
Lab Chip. 2008 Dec;8(12):2146-50. doi: 10.1039/b811135a. Epub 2008 Aug 22.
9
Conditioning saliva for use in a microfluidic biosensor.
Lab Chip. 2008 Nov;8(11):1847-51. doi: 10.1039/b811150b. Epub 2008 Oct 1.
10
Analytical sensitivity limits for lateral flow immunoassays.
Clin Chem. 2008 Jul;54(7):1250-1. doi: 10.1373/clinchem.2007.102491.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验