Suppr超能文献

通过对 DNA 结构进行修饰来提高表面上目标分子的杂交动力学。

Tailoring DNA structure to increase target hybridization kinetics on surfaces.

机构信息

Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.

出版信息

J Am Chem Soc. 2010 Aug 11;132(31):10638-41. doi: 10.1021/ja104859j.

Abstract

We report a method for increasing the rate of target hybridization on DNA-functionalized surfaces using a short internal complement DNA (sicDNA) strand. The sicDNA causes up to a 5-fold increase in association rate by inducing a conformational change that extends the DNA away from the surface, making it more available to bind target nucleic acids. The sicDNA-induced kinetic enhancement is a general phenomenon that occurred with all sequences and surfaces investigated. Additionally, the process is selective and can be used in multicomponent systems to controllably and orthogonally "turn on" specific sequences by the addition of the appropriate sicDNA. Finally, we show that sicDNA is compatible with systems used in gene regulation, intracellular detection, and microarrays, suggesting several potential therapeutic, diagnostic, and bioinformatic applications.

摘要

我们报告了一种使用短内部互补 DNA(sicDNA)链来提高 DNA 功能化表面上目标杂交速率的方法。sicDNA 通过诱导使 DNA 远离表面的构象变化,从而增加了多达 5 倍的结合速率,使其更有利于与靶核酸结合。sicDNA 诱导的动力学增强是一种普遍现象,所有研究的序列和表面都存在这种现象。此外,该过程具有选择性,可以在多组分系统中使用,通过添加适当的 sicDNA 来可控且正交地“打开”特定序列。最后,我们表明 sicDNA 与基因调控、细胞内检测和微阵列中使用的系统兼容,这表明了其在治疗、诊断和生物信息学应用方面的一些潜在应用。

相似文献

1
Tailoring DNA structure to increase target hybridization kinetics on surfaces.
J Am Chem Soc. 2010 Aug 11;132(31):10638-41. doi: 10.1021/ja104859j.
2
Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide.
Langmuir. 2012 Oct 9;28(40):14330-7. doi: 10.1021/la302799s. Epub 2012 Sep 28.
4
Sterically controlled docking of gold nanoparticles on ferritin surface by DNA hybridization.
Nanotechnology. 2011 Jul 8;22(27):275312. doi: 10.1088/0957-4484/22/27/275312. Epub 2011 May 26.
5
Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization.
Angew Chem Int Ed Engl. 2011 Dec 9;50(50):11994-8. doi: 10.1002/anie.201105121. Epub 2011 Oct 13.
6
Polystyrene spheres coated with gold nanoparticles for detection of DNA.
Electrophoresis. 2010 Sep;31(18):3090-6. doi: 10.1002/elps.201000204.
7
Polyvalent Spherical Nucleic Acids for Universal Display of Functional DNA with Ultrahigh Stability.
Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9439-9442. doi: 10.1002/anie.201805532. Epub 2018 Jun 20.
8
A proposed mechanism of the influence of gold nanoparticles on DNA hybridization.
ACS Nano. 2014 Jul 22;8(7):6765-77. doi: 10.1021/nn500790m. Epub 2014 Jul 1.
9
DNA reorientation on Au nanoparticles: label-free detection of hybridization by surface enhanced Raman spectroscopy.
Chem Commun (Camb). 2011 Oct 21;47(39):10966-8. doi: 10.1039/c1cc13705k. Epub 2011 Sep 12.
10
Label-free and naked eye detection of PNA/DNA hybridization using enhancement of gold nanoparticles.
Chem Commun (Camb). 2010 May 21;46(19):3315-7. doi: 10.1039/b926940a. Epub 2010 Apr 1.

引用本文的文献

1
Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy.
Mater Today Bio. 2023 Jul 26;22:100750. doi: 10.1016/j.mtbio.2023.100750. eCollection 2023 Oct.
2
Spherical nucleic acids: Organized nucleotide aggregates as versatile nanomedicine.
Aggregate (Hoboken). 2022 Feb;3(1). doi: 10.1002/agt2.120. Epub 2021 Sep 14.
3
Sequence Multiplicity within Spherical Nucleic Acids.
ACS Nano. 2020 Jan 28;14(1):1084-1092. doi: 10.1021/acsnano.9b08750. Epub 2020 Jan 9.
6
Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.
ACS Nano. 2014 Dec 23;8(12):12386-96. doi: 10.1021/nn505047n. Epub 2014 Dec 12.
7
Thermal stability of DNA functionalized gold nanoparticles.
Bioconjug Chem. 2013 Nov 20;24(11):1790-7. doi: 10.1021/bc300687z. Epub 2013 Nov 6.
9
Multiplexed nanoflares: mRNA detection in live cells.
Anal Chem. 2012 Feb 21;84(4):2062-6. doi: 10.1021/ac202648w. Epub 2012 Jan 30.

本文引用的文献

1
Hybridization kinetics of double-stranded DNA probes for rapid molecular analysis.
Analyst. 2009 Aug;134(8):1675-81. doi: 10.1039/b906077d. Epub 2009 May 22.
2
Nano-flares for mRNA regulation and detection.
ACS Nano. 2009 Aug 25;3(8):2147-52. doi: 10.1021/nn9003814.
3
Aptamer nano-flares for molecular detection in living cells.
Nano Lett. 2009 Sep;9(9):3258-61. doi: 10.1021/nl901517b.
4
Switchable self-protected attractions in DNA-functionalized colloids.
Nat Mater. 2009 Jul;8(7):590-5. doi: 10.1038/nmat2471. Epub 2009 Jun 14.
5
Gene regulation with polyvalent siRNA-nanoparticle conjugates.
J Am Chem Soc. 2009 Feb 18;131(6):2072-3. doi: 10.1021/ja808719p.
6
Polyvalent DNA nanoparticle conjugates stabilize nucleic acids.
Nano Lett. 2009 Jan;9(1):308-11. doi: 10.1021/nl802958f.
7
Molecular engineering of DNA: molecular beacons.
Angew Chem Int Ed Engl. 2009;48(5):856-70. doi: 10.1002/anie.200800370.
8
Kinetics of base stacking-aided DNA hybridization.
Chem Commun (Camb). 2008 Dec 28(48):6600-2. doi: 10.1039/b812929k. Epub 2008 Nov 12.
9
Peptide antisense nanoparticles.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17222-6. doi: 10.1073/pnas.0801609105.
10
Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors.
Nat Nanotechnol. 2007 May;2(5):318-23. doi: 10.1038/nnano.2007.99. Epub 2007 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验