Department of Microbiology, Mount Sinai School of Medicine, Box 1124, 1 Gustave L. Levy Place, New York, NY 10029, USA.
J Virol. 2010 Oct;84(20):10581-91. doi: 10.1128/JVI.00925-10. Epub 2010 Aug 4.
The ebolavirus (EBOV) VP35 protein binds to double-stranded RNA (dsRNA), inhibits host alpha/beta interferon (IFN-α/β) production, and is an essential component of the viral polymerase complex. Structural studies of the VP35 C-terminal IFN inhibitory domain (IID) identified specific structural features, including a central basic patch and a hydrophobic pocket, that are important for dsRNA binding and IFN inhibition. Several other conserved basic residues bordering the central basic patch and a separate cluster of basic residues, called the first basic patch, were also identified. Functional analysis of alanine substitution mutants indicates that basic residues outside the central basic patch are not required for dsRNA binding or for IFN inhibition. However, minigenome assays, which assess viral RNA polymerase complex function, identified these other basic residues to be critical for viral RNA synthesis. Of these, a subset located within the first basic patch is important for VP35-nucleoprotein (NP) interaction, as evidenced by the inability of alanine substitution mutants to coimmunoprecipitate with NP. Therefore, first basic patch residues are likely critical for replication complex formation through interactions with NP. Coimmunoprecipitation studies further demonstrate that the VP35 IID is sufficient to interact with NP and that dsRNA can modulate VP35 IID interactions with NP. Other basic residue mutations that disrupt the VP35 polymerase cofactor function do not affect interaction with NP or with the amino terminus of the viral polymerase. Collectively, these results highlight the importance of conserved basic residues from the EBOV VP35 C-terminal IID and validate the VP35 IID as a potential therapeutic target.
埃博拉病毒 (EBOV) VP35 蛋白与双链 RNA (dsRNA) 结合,抑制宿主α/β干扰素 (IFN-α/β) 的产生,是病毒聚合酶复合物的重要组成部分。VP35 C 末端 IFN 抑制结构域 (IID) 的结构研究确定了特定的结构特征,包括中央碱性斑块和疏水口袋,这些特征对于 dsRNA 结合和 IFN 抑制至关重要。还确定了中央碱性斑块周围的几个其他保守碱性残基和另一个称为第一碱性斑块的碱性残基簇。丙氨酸取代突变体的功能分析表明,中央碱性斑块以外的碱性残基对于 dsRNA 结合或 IFN 抑制不是必需的。然而,评估病毒 RNA 聚合酶复合物功能的 minigenome 测定确定了这些其他碱性残基对于病毒 RNA 合成至关重要。其中,位于第一碱性斑块内的一部分对于 VP35-核蛋白 (NP) 相互作用很重要,这一点可以通过丙氨酸取代突变体不能与 NP 共免疫沉淀来证明。因此,第一碱性斑块残基可能通过与 NP 的相互作用对于复制复合物的形成至关重要。共免疫沉淀研究进一步表明,VP35 IID 足以与 NP 相互作用,dsRNA 可以调节 VP35 IID 与 NP 的相互作用。破坏 VP35 聚合酶辅助因子功能的其他碱性残基突变不会影响与 NP 或病毒聚合酶氨基末端的相互作用。总的来说,这些结果强调了 EBOV VP35 C 末端 IID 中保守碱性残基的重要性,并验证了 VP35 IID 作为潜在治疗靶点的潜力。