Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
Curr Biol. 2010 Aug 24;20(16):1423-31. doi: 10.1016/j.cub.2010.07.026. Epub 2010 Aug 12.
Fission yeast possesses three unconventional myosins: Myo1p (a class I myosin that functions at endocytic actin patches) and Myo51p and Myo52p (class V myosins that function at contractile rings and actin cables, respectively). Here we used a combination of in vivo and in vitro approaches to investigate how changes in the actin track influence the motor activity and spatial regulation of these myosins.
We optimized the isolation of Myo1p, Myo51p, and Myo52p. All three myosins exhibited robust motor activity in ATPase and actin filament gliding assays. However, decoration of actin with tropomyosin differentially regulates the activity of these motors. Tropomyosin inhibits Myo1p by blocking its ability to form productive associations with actin filaments, whereas tropomyosin increases the actin affinity and ATPase activity of Myo51p and Myo52p. The actin filament crosslinking protein fimbrin rescues Myo1p motor activity by displacing tropomyosin from actin filaments. Consistent with our in vitro findings, fimbrin and tropomyosin have opposing effects on Myo1p function at actin patches. Defects in tropomyosin function led to shorter Myo1p patch lifetimes, whereas loss of fimbrin extended Myo1p lifetimes. Furthermore, defects in tropomyosin function decreased the efficiency of Myo52p-directed motility along actin cables in the cell.
Tropomyosin promotes myosin-V motility along actin cables. Accumulation of fimbrin at actin patches relieves Myo1p from tropomyosin-mediated inhibition, ensuring maximal myosin-I motor activity at these sites. Thus, spatial regulation of myosin motor function is in part controlled by specific changes in the composition of the actin track.
裂殖酵母拥有三种非传统肌球蛋白:Myo1p(一种在胞吞作用的肌动蛋白斑上发挥作用的 I 类肌球蛋白)和 Myo51p 和 Myo52p(分别在收缩环和肌动蛋白电缆上发挥作用的 V 类肌球蛋白)。在这里,我们使用体内和体外相结合的方法来研究肌球蛋白运动活性和空间调节的改变如何影响肌动蛋白轨迹。
我们优化了 Myo1p、Myo51p 和 Myo52p 的分离方法。这三种肌球蛋白在 ATP 酶和肌动蛋白丝滑行试验中均表现出强大的运动活性。然而,肌动蛋白上的原肌球蛋白的存在会对这些肌球蛋白的活性产生差异调节。原肌球蛋白通过阻止其与肌动蛋白丝形成有效结合,从而抑制 Myo1p 的活性,而原肌球蛋白增加了 Myo51p 和 Myo52p 的肌动蛋白亲和力和 ATP 酶活性。肌动蛋白交联蛋白 fimbrin 通过将原肌球蛋白从肌动蛋白丝上置换出来,恢复了 Myo1p 的运动活性。与我们的体外发现一致,fimbrin 和原肌球蛋白对肌动蛋白斑上的 Myo1p 功能具有相反的影响。原肌球蛋白功能缺陷导致 Myo1p 斑的寿命缩短,而 fimbrin 的缺失则延长了 Myo1p 的寿命。此外,原肌球蛋白功能缺陷降低了 Myo52p 沿肌动蛋白电缆定向运动的效率。
原肌球蛋白促进肌球蛋白-V 沿肌动蛋白电缆运动。肌动蛋白斑上 fimbrin 的积累使 Myo1p 免受原肌球蛋白介导的抑制,从而确保了这些部位的 Myo1p 最大运动活性。因此,肌球蛋白运动功能的空间调节部分受肌动蛋白轨迹组成的特定变化控制。