Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
J Chem Phys. 2010 Aug 7;133(5):054507. doi: 10.1063/1.3463439.
It has recently become apparent that the dissipation function, first defined by Evans and Searles [J. Chem. Phys. 113, 3503 (2000)], is one of the most important functions in classical nonequilibrium statistical mechanics. It is the argument of the Evans-Searles fluctuation theorem, the dissipation theorem, and the relaxation theorems. It is a function of both the initial distribution and the dynamics. We pose the following question: How does the dissipation function change if we define that function with respect to the time evolving phase space distribution as one relaxes from the initial equilibrium distribution toward the nonequilibrium steady state distribution? We prove that this covariant dissipation function has a rather simple fixed relationship to the dissipation function defined with respect to the initial distribution function. We also show that there is no exact, time-local, Evans-Searles nonequilibrium steady state fluctuation relation for deterministic systems. Only an asymptotic version exists.
最近,人们已经清楚地认识到,耗散函数(first defined by Evans and Searles [J. Chem. Phys. 113, 3503 (2000)])是经典非平衡统计力学中最重要的函数之一。它是 Evans-Searles 涨落定理、耗散定理和弛豫定理的论据。它是初始分布和动力学的函数。我们提出以下问题:如果我们将该函数定义为随着时间的演化相空间分布,那么当我们从初始平衡分布松弛到非平衡稳定态分布时,该函数的耗散函数会发生怎样的变化?我们证明了这个协变耗散函数与相对于初始分布函数定义的耗散函数之间存在相当简单的固定关系。我们还表明,对于确定性系统,不存在精确的、时间局部的 Evans-Searles 非平衡稳定态涨落关系。只有渐近版本存在。