Department of Oral Biology, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO 64108, USA.
Bone. 2010 Nov;47(5):872-81. doi: 10.1016/j.bone.2010.08.007. Epub 2010 Aug 14.
The osteocyte is hypothesized to be the mechanosensory cell in bone. However, osteoblastic cell models have been most commonly used to investigate mechanisms of mechanosensation in bone. Therefore, we sought to determine if differences might exist between osteocytic and osteoblastic cell models relative to the activation of β-catenin signaling in MLO-Y4 osteocytic, 2T3 osteoblastic and primary neonatal calvarial cells (NCCs) in response to pulsatile fluid flow shear stress (PFFSS). β-catenin nuclear translocation was observed in the MLO-Y4 cells at 2 and 16 dynes/cm(2) PFFSS, but only at 16 dynes/cm(2) in the 2T3 or NCC cultures. The MLO-Y4 cells released high amounts of PGE(2) into the media at all levels of PFFSS (2-24 dynes/cm(2)) and we observed a biphasic pattern relative to the level of PFFSS. In contrast PGE(2) release by 2T3 cells was only detected during 16 and 24 dynes/cm(2) PFFSS starting at >1h and never reached the levels produced by the MLO-Y4 cells. Exogenously added PGE(2) was able to induce β-catenin nuclear translocation in all cells suggesting that the differences between the cell lines observed for β-catenin nuclear translocation were associated with the differences in PGE(2) production. To investigate a possible mechanism for the differences in PGE(2) release by the MLO-Y4 and 2T3 cells we examined the regulation of Ptgs2 (Cox-2) gene expression by PFFSS. 2T3 cell Ptgs2 mRNA levels at both 0 and 24h after 2h of PFFSS showed biphasic increases with peaks at 4 and 24 dynes/cm(2) and 24-hour levels were higher than zero-hour levels. MLO-Y4 cell Ptgs2 expression was similarly biphasic; however at 24-hour post-flow Ptgs2 mRNA levels were lower. Our data suggest significant differences in the sensitivity and kinetics of the response mechanisms of the 2T3 and neonatal calvarial osteoblastic versus MLO-Y4 osteocytic cells to PFFSS. Furthermore our data support a role for PGE(2) in mediating the activation of β-catenin signaling in response to the fluid flow shear stress.
骨细胞被假设为骨骼中的机械敏感细胞。然而,骨细胞模型最常用于研究骨机械敏感的机制。因此,我们试图确定在对脉动流切应力(PFFSS)的反应中,骨细胞与成骨细胞模型之间是否存在差异,特别是在 MLO-Y4 骨细胞、2T3 成骨细胞和原代新生颅骨细胞(NCC)中β-连环蛋白信号的激活。在 MLO-Y4 细胞中观察到β-连环蛋白核易位在 2 和 16 dynes/cm 2 PFFSS,但在 2T3 或 NCC 培养物中仅在 16 dynes/cm 2 时观察到。MLO-Y4 细胞在所有 PFFSS 水平(2-24 dynes/cm 2 )下向培养基中释放大量 PGE 2 ,并且我们观察到与 PFFSS 水平相对的双相模式。相比之下,在 16 和 24 dynes/cm 2 PFFSS 下仅检测到 2T3 细胞释放 PGE 2 ,起始时间> 1h,从未达到 MLO-Y4 细胞产生的水平。外源性添加的 PGE 2 能够诱导所有细胞中的β-连环蛋白核易位,这表明观察到的β-连环蛋白核易位细胞系之间的差异与 PGE 2 产生的差异有关。为了研究 MLO-Y4 和 2T3 细胞中 PGE 2 释放差异的可能机制,我们检查了 PFFSS 对 Ptgs2(Cox-2)基因表达的调节。在 PFFSS 后 2h 的 0 和 24h 时,2T3 细胞 Ptgs2 mRNA 水平呈双相增加,峰值为 4 和 24 dynes/cm 2 ,24 小时水平高于 0 小时水平。MLO-Y4 细胞 Ptgs2 表达也呈双相;然而,在 24 小时后,Ptgs2 mRNA 水平较低。我们的数据表明,在对 PFFSS 的反应机制中,2T3 和新生颅骨成骨细胞与 MLO-Y4 骨细胞之间的敏感性和动力学存在显著差异。此外,我们的数据支持 PGE 2 在介导流体流动切应力下β-连环蛋白信号的激活中发挥作用。