Suppr超能文献

用成骨蔷薇纳米管调节钛上的细胞黏附。

Tuning cell adhesion on titanium with osteogenic rosette nanotubes.

机构信息

Division of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA.

出版信息

J Biomed Mater Res A. 2010 Nov;95(2):550-63. doi: 10.1002/jbm.a.32832.

Abstract

Self-assembled rosette nanotubes (RNTs), obtained from a twin G∧C base functionalized with lysine-arginine-serine-arginine [KRSR-(G∧C)(2)], were designed and investigated as bioactive coatings on titanium. These results were compared to RNTs derived from Lysine-G∧C (K-G∧C), Arg-Gly-Asp-G∧C (RGD-G∧C), and aminobutane-(G∧C)(2) [AB-(G∧C)(2)]. The results from this study revealed that these materials had excellent cytocompatibility properties as they enhanced osteoblast (bone forming cell) adhesion when coated on titanium. In particular, KRSR and RGD functionalized RNTs coated on titanium promoted the greatest osteoblast densities relative to untreated titanium. Furthermore, KRSR functionalized RNTs selectively improved osteoblast adhesion relative to fibroblast (soft-tissue forming cell) and endothelial (cells that line the vascular) cell adhesion. In contrast with these results, RNTs obtained from an unfunctionalized twin base [AB-(G∧C)(2)], RGD-G∧C co-assembled with K-G∧C and K-G∧C significantly enhanced endothelial cell attachment, which may find applications in the vascularization of newly formed bone tissue. In summary, these studies suggest that the surface of orthopedic implant materials (such as titanium) could be tailored to promote selective cell adhesion using biologically-inspired nanotubular structures functionalized with osteogenic compounds.

摘要

自组装蔷薇状纳米管(RNTs),由赖氨酸-精氨酸-丝氨酸-精氨酸[KRSR-(G∧C)(2)]功能化的双 G∧C 获得,被设计并研究为钛上的生物活性涂层。这些结果与来自赖氨酸-G∧C(K-G∧C)、精氨酸-甘氨酸-天冬氨酸-G∧C(RGD-G∧C)和氨基丁烷-G∧C(2)[AB-(G∧C)(2)]的 RNTs 进行了比较。该研究的结果表明,这些材料具有极好的细胞相容性特性,因为它们在涂覆于钛时增强了成骨细胞(骨形成细胞)的黏附。特别是,KRSR 和 RGD 功能化的 RNTs 涂覆于钛上时,相对于未经处理的钛,可促进最大的成骨细胞密度。此外,相对于成纤维细胞(软组织形成细胞)和内皮细胞(衬里血管的细胞),KRSR 功能化的 RNTs 选择性地提高了成骨细胞的黏附。与这些结果相反,来自未功能化双碱基[AB-(G∧C)(2)]的 RNTs、RGD-G∧C 与 K-G∧C 共组装以及 K-G∧C 显著增强了内皮细胞的附着,这可能在新形成的骨组织的血管化中得到应用。总之,这些研究表明,使用具有成骨化合物功能化的生物启发纳米管状结构,可以对骨科植入材料(如钛)的表面进行定制,以促进选择性细胞黏附。

相似文献

1
Tuning cell adhesion on titanium with osteogenic rosette nanotubes.
J Biomed Mater Res A. 2010 Nov;95(2):550-63. doi: 10.1002/jbm.a.32832.
2
Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
Biomaterials. 2009 Mar;30(7):1309-20. doi: 10.1016/j.biomaterials.2008.11.020. Epub 2008 Dec 13.
3
Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation.
Biomed Mater. 2013 Dec;8(6):065003. doi: 10.1088/1748-6041/8/6/065003. Epub 2013 Nov 14.
4
Increased osteoblast adhesion on nanograined Ti modified with KRSR.
J Biomed Mater Res A. 2007 Mar 1;80(3):602-11. doi: 10.1002/jbm.a.30954.
5
Osteoblast response to titanium surfaces functionalized with extracellular matrix peptide biomimetics.
Clin Oral Implants Res. 2011 Aug;22(8):865-72. doi: 10.1111/j.1600-0501.2010.02074.x. Epub 2011 Jan 18.
6
Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents.
Int J Nanomedicine. 2009;4:91-7. doi: 10.2147/ijn.s5589. Epub 2009 Apr 20.
7
Increased preosteoblast adhesion and osteogenic gene expression on TiO2 nanotubes modified with KRSR.
J Mater Sci Mater Med. 2013 Apr;24(4):1079-91. doi: 10.1007/s10856-013-4869-6. Epub 2013 Jan 31.
8
Molecular plasma deposited peptides on anodized nanotubular titanium: an osteoblast density study.
J Biomed Mater Res A. 2011 Aug;98(2):192-200. doi: 10.1002/jbm.a.33105. Epub 2011 May 4.
9
RGD-tagged helical rosette nanotubes aggravate acute lipopolysaccharide-induced lung inflammation.
Int J Nanomedicine. 2011;6:3113-23. doi: 10.2147/IJN.S25205. Epub 2011 Dec 2.
10

引用本文的文献

1
Peptide-Based Biomaterials for Bone and Cartilage Regeneration.
Biomedicines. 2024 Jan 29;12(2):313. doi: 10.3390/biomedicines12020313.
2
Cellular Delivery of Plasmid DNA into Wheat Microspores Using Rosette Nanotubes.
ACS Omega. 2020 Sep 16;5(38):24422-24433. doi: 10.1021/acsomega.0c02830. eCollection 2020 Sep 29.
3
Enhanced antibiotic activity of ampicillin conjugated to gold nanoparticles on PEGylated rosette nanotubes.
Int J Nanomedicine. 2019 Sep 9;14:7281-7289. doi: 10.2147/IJN.S209756. eCollection 2019.
5
The role of peptides in bone healing and regeneration: a systematic review.
BMC Med. 2016 Jul 11;14:103. doi: 10.1186/s12916-016-0646-y.
6
Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.
Int J Nanomedicine. 2015 Dec 10;10:7385-96. doi: 10.2147/IJN.S92733. eCollection 2015.
7
Increased preosteoblast adhesion and osteogenic gene expression on TiO2 nanotubes modified with KRSR.
J Mater Sci Mater Med. 2013 Apr;24(4):1079-91. doi: 10.1007/s10856-013-4869-6. Epub 2013 Jan 31.

本文引用的文献

1
Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents.
Int J Nanomedicine. 2009;4:91-7. doi: 10.2147/ijn.s5589. Epub 2009 Apr 20.
2
Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
Nanotechnology. 2009 Apr 29;20(17):175101. doi: 10.1088/0957-4484/20/17/175101. Epub 2009 Apr 3.
4
Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering.
Biomaterials. 2009 Mar;30(7):1309-20. doi: 10.1016/j.biomaterials.2008.11.020. Epub 2008 Dec 13.
5
Rosette nanotubes show low acute pulmonary toxicity in vivo.
Int J Nanomedicine. 2008;3(3):373-83. doi: 10.2147/ijn.s3489.
7
Enhanced osteoblast adhesion on self-assembled nanostructured hydrogel scaffolds.
Tissue Eng Part A. 2008 Aug;14(8):1353-64. doi: 10.1089/ten.tea.2006.0436.
10
Enhanced functions of vascular cells on nanostructured Ti for improved stent applications.
Tissue Eng. 2007 Jul;13(7):1421-30. doi: 10.1089/ten.2006.0376.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验