Suppr超能文献

开发一种混合决策支持模型,以实现最佳心室辅助设备脱机。

Development of a hybrid decision support model for optimal ventricular assist device weaning.

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Ann Thorac Surg. 2010 Sep;90(3):713-20. doi: 10.1016/j.athoracsur.2010.03.073.

Abstract

BACKGROUND

Despite the small but promising body of evidence for cardiac recovery in patients that have received ventricular assist device (VAD) support, the criteria for identifying and selecting candidates who might be weaned from a VAD have not been established.

METHODS

A clinical decision support system was developed based on a Bayesian Belief Network that combined expert knowledge with multivariate statistical analysis. Expert knowledge was derived from interviews of 11 members of the Artificial Heart Program at the University of Pittsburgh Medical Center. This was supplemented by retrospective clinical data from the 19 VAD patients considered for weaning between 1996 and 2004. Artificial Neural Networks and Natural Language Processing were used to mine these data and extract sensitive variables.

RESULTS

Three decision support models were compared. The model exclusively based on expert-derived knowledge was the least accurate and most conservative. It underestimated the incidence of heart recovery, incorrectly identifying 4 of the successfully weaned patients as transplant candidates. The model derived exclusively from clinical data performed better but misidentified 2 patients: 1 weaned successfully, and 1 that needed a cardiac transplant ultimately. An expert-data hybrid model performed best, with 94.74% accuracy and 75.37% to 99.07% confidence interval, misidentifying only 1 patient weaned from support.

CONCLUSIONS

A clinical decision support system may facilitate and improve the identification of VAD patients who are candidates for cardiac recovery and may benefit from VAD removal. It could be potentially used to translate success of active centers to those less established and thereby expand use of VAD therapy.

摘要

背景

尽管有一些小型但有希望的证据表明接受心室辅助装置(VAD)支持的患者存在心脏恢复的可能性,但尚未确定识别和选择可能从 VAD 脱机的候选者的标准。

方法

根据贝叶斯信念网络开发了一种临床决策支持系统,该系统将专家知识与多变量统计分析相结合。专家知识源自匹兹堡大学医学中心人工心脏计划的 11 名成员的访谈。此外,还补充了 1996 年至 2004 年间考虑脱机的 19 名 VAD 患者的回顾性临床数据。使用人工神经网络和自然语言处理来挖掘这些数据并提取敏感变量。

结果

比较了三种决策支持模型。完全基于专家知识的模型准确性最低且最保守。它低估了心脏恢复的发生率,错误地将 4 名成功脱机的患者识别为移植候选者。完全从临床数据中得出的模型表现稍好,但错误地识别了 2 名患者:1 名成功脱机,1 名最终需要心脏移植。专家-数据混合模型表现最佳,准确率为 94.74%,置信区间为 75.37%至 99.07%,仅错误识别了 1 名从支持中脱机的患者。

结论

临床决策支持系统可促进和改善识别适合心脏恢复的 VAD 患者的工作,并可能使 VAD 去除受益。它可以潜在地用于将活跃中心的成功率转化为那些不太成熟的中心,从而扩大 VAD 治疗的应用。

相似文献

1
Development of a hybrid decision support model for optimal ventricular assist device weaning.
Ann Thorac Surg. 2010 Sep;90(3):713-20. doi: 10.1016/j.athoracsur.2010.03.073.
3
Automated knowledge-based fuzzy models generation for weaning of patients receiving ventricular assist device (VAD) therapy.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2206-9. doi: 10.1109/EMBC.2012.6346400.
5
Pre-explant stability of unloading-promoted cardiac improvement predicts outcome after weaning from ventricular assist devices.
Circulation. 2012 Sep 11;126(11 Suppl 1):S9-19. doi: 10.1161/CIRCULATIONAHA.111.084640.
8
Invited commentary.
Ann Thorac Surg. 2010 Sep;90(3):720-1. doi: 10.1016/j.athoracsur.2010.05.001.

引用本文的文献

4
The Role of Echocardiography in Neonates and Pediatric Patients on Extracorporeal Membrane Oxygenation.
Front Pediatr. 2018 Oct 26;6:297. doi: 10.3389/fped.2018.00297. eCollection 2018.
5
A Bayesian Model to Predict Right Ventricular Failure Following Left Ventricular Assist Device Therapy.
JACC Heart Fail. 2016 Sep;4(9):711-21. doi: 10.1016/j.jchf.2016.04.004. Epub 2016 Jun 8.
8
Insanity of left ventricular assist therapy: doing the same thing and expecting different results.
Circ Heart Fail. 2011 Nov;4(6):680-1. doi: 10.1161/CIRCHEARTFAILURE.111.964650.

本文引用的文献

2
Cardiac recovery during mechanical assist device support.
Semin Thorac Cardiovasc Surg. 2008 Fall;20(3):234-46. doi: 10.1053/j.semtcvs.2008.08.003.
4
Mechanical circulatory support: a clinical reality.
Asian Cardiovasc Thorac Ann. 2008 Oct;16(5):419-31. doi: 10.1177/021849230801600518.
5
Impact of left ventricular assist device (LVAD) support on the cardiac reverse remodeling process.
Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):479-96. doi: 10.1016/j.pbiomolbio.2008.02.002. Epub 2008 Feb 12.
6
Left ventricular assist device-induced molecular changes in the failing myocardium.
Curr Opin Cardiol. 2008 May;23(3):206-18. doi: 10.1097/HCO.0b013e3282fc7010.
7
Reverse remodeling during long-term mechanical unloading of the left ventricle.
J Mol Cell Cardiol. 2007 Sep;43(3):231-42. doi: 10.1016/j.yjmcc.2007.05.020. Epub 2007 Jun 6.
8
Improvement in survival after mechanical circulatory support with pneumatic pulsatile ventricular assist devices in pediatric patients.
Ann Thorac Surg. 2006 Sep;82(3):917-24; discussion 924-5. doi: 10.1016/j.athoracsur.2006.03.065.
9
LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery.
J Card Fail. 2006 Apr;12(3):227-39. doi: 10.1016/j.cardfail.2005.10.012.
10
Prediction of cardiac function after weaning from ventricular assist devices.
J Thorac Cardiovasc Surg. 2005 Dec;130(6):1555-60. doi: 10.1016/j.jtcvs.2005.08.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验