School of Chemistry, University of Hyderabad, Hyderabad, India.
J Colloid Interface Sci. 2010 Nov 15;351(2):374-83. doi: 10.1016/j.jcis.2010.07.071. Epub 2010 Aug 4.
We report formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles from a new blend system consisting of an amorphous polymer polybenzimidazole (PBI) and an ionomer sodium salt of sulfonated polystyrene (SPS-Na). The ionomer used for the blending is spherical in shape with sulfonate groups on the surface of the particles. An in depth investigation of the blends at various sulfonation degrees and compositions using Fourier transform infrared (FT-IR) spectroscopy provides direct evidence of specific hydrogen bonding interactions between the N-H groups of PBI and the sulfonate groups of SPS-Na. The disruption of PBI chains self association owing to the interaction between the functional groups of these polymer pairs is the driving force for the blending. Thermodynamical studies carried out by using differential scanning calorimeter (DSC) establish partially miscible phase separated blending of these polymers in a wider composition range. The two distinguishable glass transition temperatures (T(g)) which are different from the neat components and unaltered with the blends composition attribute that the domain size of heterogeneity (d(d)) of the blends is >20 nm since one of the blend component (SPS-Na particle) diameter is ∼70 nm. The diminish of PBI chains self association upon blending with SPS-Na particles and the presence of invariant T(g)'s of the blends suggest the wrapping of PBI chains over the SPS-Na spherical particle surface and hence resulting a core-shell morphology. Transmission electron microscopy (TEM) study provides direct evidence of core-shell nanoparticle formation; where core is the polystyrene and shell is the PBI. The sulfonation degree affects the blends phase separations. The higher degree of sulfonation favors the disruption of PBI self association and thus forms partially miscible two phases blends with core-shell morphology.
我们报告了一种新的共混体系,由无定形聚合物聚苯并咪唑(PBI)和磺化聚苯乙烯的钠离子盐(SPS-Na)组成,形成了核(聚苯乙烯)-壳(聚苯并咪唑)纳米粒子。用于共混的离子体呈球形,颗粒表面带有磺酸基团。使用傅里叶变换红外(FT-IR)光谱对不同磺化度和组成的共混物进行深入研究,提供了 PBI 的 N-H 基团与 SPS-Na 的磺酸基团之间存在特定氢键相互作用的直接证据。由于这些聚合物对的官能团之间的相互作用,PBI 链的自缔合被破坏,这是共混的驱动力。使用差示扫描量热仪(DSC)进行的热力学研究表明,这些聚合物在更宽的组成范围内部分混溶相分离共混。两个可区分的玻璃化转变温度(Tg)不同于纯组分,并且随共混物组成而变化,表明共混物的不均匀性(d(d))的域尺寸> 20nm,因为共混物的一种组分(SPS-Na 颗粒)直径约为 70nm。在与 SPS-Na 颗粒共混时,PBI 链的自缔合减少,以及共混物的 Tg'不变,表明 PBI 链缠绕在 SPS-Na 球形颗粒表面上,从而形成核壳形貌。透射电子显微镜(TEM)研究提供了核壳纳米粒子形成的直接证据;其中核为聚苯乙烯,壳为 PBI。磺化度影响共混物的相分离。较高的磺化度有利于破坏 PBI 的自缔合,从而形成具有核壳形貌的部分混溶性两相共混物。