Suppr超能文献

构象集合、信号转导与残基热点:在药物发现中的应用

Conformational ensembles, signal transduction and residue hot spots: application to drug discovery.

作者信息

Acuner Ozbabacan Saliha Ece, Gursoy Attila, Keskin Ozlem, Nussinov Ruth

机构信息

Koc University, Center for Computational Biology and Bioinformatics, and College of Engineering, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey.

出版信息

Curr Opin Drug Discov Devel. 2010 Sep;13(5):527-37.

Abstract

A key step in drug development is the identification of both a protein target and its topological cellular network location and interactions, with regard to information flow in disease-causing events and to medication effects. Information flow involves a cascade of binding or covalent modification processes, with each step being affected by those that occur previously. Proteins are flexible, and information flows via dynamic changes in the distribution of conformational protein ensembles; molecular recognition is mainly determined by these changes. Drug discovery often focuses on signaling proteins situated at the crossroads of cellular networks; such signaling proteins have multiple partners that bind through shared binding sites. This review highlights these shared binding sites, and describes research to suggest that partners binding at these sites could at least partly interact via different energetically dominant 'hot-spot' residues. The data also indicate that, despite dynamic changes in the distribution of the conformational ensembles, the hot-spot conformations are retained in their pre-organized states.

摘要

药物研发中的一个关键步骤是确定蛋白质靶点及其拓扑细胞网络位置和相互作用,这涉及致病事件中的信息流以及药物作用。信息流涉及一系列结合或共价修饰过程,每一步都受到先前发生的步骤的影响。蛋白质具有灵活性,信息通过构象蛋白质集合分布的动态变化进行传递;分子识别主要由这些变化决定。药物发现通常聚焦于位于细胞网络交叉点的信号蛋白;此类信号蛋白有多个通过共享结合位点结合的伙伴。本综述着重介绍这些共享结合位点,并描述相关研究,这些研究表明在这些位点结合的伙伴至少可以部分地通过不同的能量主导“热点”残基相互作用。数据还表明,尽管构象集合的分布存在动态变化,但热点构象保持其预先组织好的状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验