Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, UK.
Phys Chem Chem Phys. 2010 Nov 7;12(41):13484-98. doi: 10.1039/c003720f. Epub 2010 Aug 31.
Nonlinear optical imaging has revolutionized microscopy for the life sciences. Second harmonic generation (SHG), the younger sibling of two-photon excited fluorescence (2PF), is a technique that can produce high resolution images from deep inside biological tissues. Second harmonic light is generated by the coherent scattering of an ensemble of aligned chromophores in a focused, pulsed laser beam. SHG is only generated at the focal spot, reducing the background signal, and requires ordered chromophores, so is highly structure-specific. In contrast to two-photon fluorescence, the physical process that creates the signal does not require the formation of excited states, allowing elimination of harmful photochemistry. While the SHG of native proteins and biopolymers is well known, the use of exogenous dyes can provide SHG contrast from areas without a sufficiently high intrinsic quadratic hyperpolarizability, β. Dyes for SHG primarily target lipid bilayers; a trait that, combined with sensitivity to transmembrane potential, allows monitoring of action potentials in a variety of excitable cells, most importantly mammalian neurons. This article summarizes the principles of SHG imaging and explores approaches for maximizing the SHG signal from a biological specimen. We survey methods of optimizing the optical set-up, enhancing the β of the dye and achieving biological compatibility. In conclusion, we examine novel applications of SHG imaging and highlight promising directions for the development of the field.
非线性光学成像是生命科学领域显微镜技术的一场革命。二次谐波产生(SHG)是双光子激发荧光(2PF)的“小弟”,它是一种能够从生物组织深处产生高分辨率图像的技术。二次谐波光是通过聚焦脉冲激光束中一系列排列整齐的发色团的相干散射产生的。SHG 仅在焦点处产生,降低了背景信号,并且需要有序的发色团,因此具有高度的结构特异性。与双光子荧光相比,产生信号的物理过程不需要形成激发态,从而可以消除有害的光化学。虽然天然蛋白质和生物聚合物的 SHG 是众所周知的,但外源性染料的使用可以提供来自内在二次超极化率β不够高的区域的 SHG 对比度。用于 SHG 的染料主要针对脂质双层;这种特性,结合对跨膜电位的敏感性,允许在各种可兴奋细胞(最重要的是哺乳动物神经元)中监测动作电位。本文总结了 SHG 成像的原理,并探讨了从生物样本中最大化 SHG 信号的方法。我们调查了优化光学设置、增强染料β和实现生物相容性的方法。最后,我们检查了 SHG 成像的新应用,并强调了该领域发展的有前途的方向。