Suppr超能文献

使用微分消除法进行参数优化:一种将约束引入目标函数的通用方法。

Parameter optimization by using differential elimination: a general approach for introducing constraints into objective functions.

作者信息

Nakatsui Masahiko, Horimoto Katsuhisa, Okamoto Masahiro, Tokumoto Yasuhito, Miyake Jun

机构信息

Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.

出版信息

BMC Syst Biol. 2010 Sep 13;4 Suppl 2(Suppl 2):S9. doi: 10.1186/1752-0509-4-S2-S9.

Abstract

BACKGROUND

The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed.

RESULTS

We propose a new approach for parameter optimization by using differential elimination, to estimate kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters introducing these constraints into an objective function, in addition to the error function of the square difference between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability of our method, we performed a simulation study by using the objective function with and without the newly developed constraints: the parameters in two models of linear and non-linear equations, under the assumption that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed.

CONCLUSIONS

The introduction of new constraints in an objective function by using differential elimination resulted in the drastic improvement of the estimation accuracy in parameter optimization methods. The performance of our approach was illustrated by simulations of the parameter optimization for two models of linear and non-linear equations, which included unmeasured molecules, by two types of optimization techniques. As a result, our method is a promising development in parameter optimization.

摘要

背景

网络动力学研究是系统生物学和合成生物学中的一个重要问题。动力学研究的关键步骤之一是对表达生物现象的模型进行参数估计。实际上,在免费软件和商业软件中已经设计并实现了各种参数优化技术。尽管由于计算算法的改进和高性能计算机的出现,参数估计的计算时间已大幅减少,但参数估计的准确性问题尚未得到解决。

结果

我们提出了一种利用微分消去法进行参数优化的新方法,以高精度估计动力学参数值。首先,我们利用微分消去法,这是一种将微分方程组重写为另一个等价方程组的代数方法,从微分方程中推导动力学参数之间的约束关系。其次,除了标准参数优化方法中测量数据与估计数据之间的平方差误差函数外,我们将这些约束引入目标函数中来估计动力学参数。为了评估我们方法的能力,我们进行了一项模拟研究,使用带有和不带有新开发约束的目标函数:在线性和非线性方程的两个模型中,假设每个模型中只有一个分子可以被测量,通过遗传算法(GA)和粒子群优化(PSO)来估计参数。结果表明,引入新的约束非常有效:带有新约束的GA和PSO能够成功地以高精度估计模拟模型中的动力学参数,而没有这些约束的传统GA和PSO方法经常失败。

结论

通过使用微分消去法在目标函数中引入新的约束,显著提高了参数优化方法的估计精度。我们的方法通过对包含未测量分子的线性和非线性方程的两个模型进行参数优化的模拟,由两种优化技术进行了说明。结果表明,我们的方法在参数优化方面具有很大的发展潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/722c/2982696/f39e42cd4a47/1752-0509-4-S2-S9-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验