Suppr超能文献

TNFα 和 IFNγ 有助于完全毒力肺鼠疫小鼠模型中针对 F1/LcrV 的免疫防御。

TNFα and IFNγ contribute to F1/LcrV-targeted immune defense in mouse models of fully virulent pneumonic plague.

机构信息

Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA.

出版信息

Vaccine. 2010 Dec 16;29(2):357-62. doi: 10.1016/j.vaccine.2010.08.099. Epub 2010 Sep 15.

Abstract

Immunization with the Yersinia pestis F1 and LcrV proteins improves survival in mouse and non-human primate models of pneumonic plague. F1- and LcrV-specific antibodies contribute to protection, however, the mechanisms of antibody-mediated defense are incompletely understood and serum antibody titers do not suffice as quantitative correlates of protection. Previously we demonstrated roles for tumor necrosis factor-alpha (TNFα) and gamma-interferon (IFNγ) during defense against conditionally attenuated pigmentation (pgm) locus-negative Y. pestis. Here, using intranasal challenge with fully virulent pgm-positive Y. pestis strain CO92, we demonstrate that neutralizing TNFα and IFNγ interferes with the capacity of therapeutically administered F1- or LcrV-specific antibody to reduce bacterial burden and increase survival. Moreover, using Y. pestis strain CO92 in an aerosol challenge model, we demonstrate that neutralizing TNFα and IFNγ interferes with protection conferred by immunization with recombinant F1-LcrV fusion protein vaccine (p<0.0005). These findings establish that TNFα and IFNγ contribute to protection mediated by pneumonic plague countermeasures targeting F1 and LcrV, and suggest that an individual's capacity to produce these cytokines in response to Y. pestis challenge will be an important co-determinant of antibody-mediated defense against pneumonic plague.

摘要

用鼠疫耶尔森氏菌 F1 和 LcrV 蛋白进行免疫接种可提高小鼠和非人类灵长类动物肺鼠疫模型的存活率。F1-和 LcrV 特异性抗体有助于保护,但抗体介导的防御机制尚不完全清楚,血清抗体滴度不能作为保护的定量相关性。先前我们证明了肿瘤坏死因子-α(TNFα)和γ-干扰素(IFNγ)在防御条件性减毒色素(pgm)基因座阴性鼠疫耶尔森氏菌中的作用。在这里,我们使用完全有毒的 pgm 阳性鼠疫耶尔森氏菌菌株 CO92 通过鼻内攻击,证明中和 TNFα 和 IFNγ 会干扰治疗性给予的 F1 或 LcrV 特异性抗体减少细菌负担和提高存活率的能力。此外,我们使用鼠疫耶尔森氏菌菌株 CO92 在气溶胶挑战模型中证明,中和 TNFα 和 IFNγ 会干扰用重组 F1-LcrV 融合蛋白疫苗免疫接种所赋予的保护作用(p<0.0005)。这些发现确立了 TNFα 和 IFNγ 有助于针对 F1 和 LcrV 的肺鼠疫对策介导的保护,并表明个体对鼠疫耶尔森氏菌挑战产生这些细胞因子的能力将是针对肺鼠疫的抗体介导防御的重要共同决定因素。

相似文献

1
TNFα and IFNγ contribute to F1/LcrV-targeted immune defense in mouse models of fully virulent pneumonic plague.
Vaccine. 2010 Dec 16;29(2):357-62. doi: 10.1016/j.vaccine.2010.08.099. Epub 2010 Sep 15.
2
Intranasal delivery of a protein subunit vaccine using a Tobacco Mosaic Virus platform protects against pneumonic plague.
Vaccine. 2016 Nov 11;34(47):5768-5776. doi: 10.1016/j.vaccine.2016.09.063. Epub 2016 Oct 13.
3
Antibodies and cytokines independently protect against pneumonic plague.
Vaccine. 2008 Dec 9;26(52):6901-7. doi: 10.1016/j.vaccine.2008.09.063. Epub 2008 Oct 14.
7
Delivery of antigens via outer membrane vesicles offered improved protection against plague.
mSphere. 2024 Sep 25;9(9):e0033024. doi: 10.1128/msphere.00330-24. Epub 2024 Aug 19.
8
Humoral and cellular immune correlates of protection against bubonic plague by a live Yersinia pseudotuberculosis vaccine.
Vaccine. 2019 Jan 3;37(1):123-129. doi: 10.1016/j.vaccine.2018.11.022. Epub 2018 Nov 19.
9
Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.
PLoS Negl Trop Dis. 2015 Oct 16;9(10):e0004162. doi: 10.1371/journal.pntd.0004162. eCollection 2015.

引用本文的文献

1
Recombinant YopE and LcrV vaccine candidates protect mice against plague and yersiniosis.
Heliyon. 2024 May 18;10(10):e31446. doi: 10.1016/j.heliyon.2024.e31446. eCollection 2024 May 30.
2
A novel sORF gene mutant strain of Yersinia pestis vaccine EV76 offers enhanced safety and improved protection against plague.
PLoS Pathog. 2024 Mar 28;20(3):e1012129. doi: 10.1371/journal.ppat.1012129. eCollection 2024 Mar.
3
Potential human immunotherapeutics for plague.
Immunother Adv. 2021 Oct 5;1(1):ltab020. doi: 10.1093/immadv/ltab020. eCollection 2021 Jan.
4
Protection Elicited by Attenuated Live Vaccine Strains against Lethal Infection with Virulent .
Vaccines (Basel). 2021 Feb 16;9(2):161. doi: 10.3390/vaccines9020161.
6
Vaccine Potential of a Recombinant Bivalent Fusion Protein LcrV-HSP70 Against Plague and Yersiniosis.
Front Immunol. 2020 Jun 12;11:988. doi: 10.3389/fimmu.2020.00988. eCollection 2020.
8
9
Single-dose combination nanovaccine induces both rapid and long-lived protection against pneumonic plague.
Acta Biomater. 2019 Dec;100:326-337. doi: 10.1016/j.actbio.2019.10.016. Epub 2019 Oct 11.

本文引用的文献

1
Predictive models and correlates of protection for testing biodefence vaccines.
Expert Rev Vaccines. 2010 May;9(5):527-37. doi: 10.1586/erv.10.22.
2
The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague.
Infect Immun. 2010 May;78(5):2045-52. doi: 10.1128/IAI.01236-09. Epub 2010 Feb 16.
4
Plague.
Vaccine. 2009 Nov 5;27 Suppl 4:D56-60. doi: 10.1016/j.vaccine.2009.07.068.
5
Dual-function antibodies to Yersinia pestis LcrV required for pulmonary clearance of plague.
Clin Vaccine Immunol. 2009 Dec;16(12):1720-7. doi: 10.1128/CVI.00333-09. Epub 2009 Oct 14.
7
Antibodies and cytokines independently protect against pneumonic plague.
Vaccine. 2008 Dec 9;26(52):6901-7. doi: 10.1016/j.vaccine.2008.09.063. Epub 2008 Oct 14.
8
Immune defense against pneumonic plague.
Immunol Rev. 2008 Oct;225:256-71. doi: 10.1111/j.1600-065X.2008.00674.x.
10
Modified caspase-3 assay indicates correlation of caspase-3 activity with immunity of nonhuman primates to Yersinia pestis infection.
Clin Vaccine Immunol. 2008 Jul;15(7):1134-7. doi: 10.1128/CVI.00091-08. Epub 2008 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验