Suppr超能文献

RNA 三链环的热力学特性。

Thermodynamic characterization of RNA triloops.

机构信息

Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63103, United States.

出版信息

Biochemistry. 2010 Oct 26;49(42):9058-62. doi: 10.1021/bi101164s.

Abstract

Relatively few thermodynamic parameters are available for RNA triloops. Therefore, 24 stem-loop sequences containing naturally occurring triloops were optically melted, and the thermodynamic parameters ΔH°, ΔS°, ΔG°(37), and T(M) for each stem-loop were determined. These new experimental values, on average, are 0.5 kcal/mol different from the values predicted for these triloops using the model proposed by Mathews et al. [Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 7287-7292]. The data for the 24 triloops reported here were then combined with the data for five triloops that were published previously. A new model was derived to predict the free energy contribution of previously unmeasured triloops. The average absolute difference between the measured values and the values predicted using this proposed model is 0.3 kcal/mol. These new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA stem-loops containing triloops and, furthermore, should allow for improved prediction of secondary structure from sequence.

摘要

RNA 三链体的热力学参数相对较少。因此,对 24 个包含天然三链体的茎环序列进行了光学熔融实验,并确定了每个茎环的热力学参数 ΔH°、ΔS°、ΔG°(37)和 T(M)。这些新的实验值与使用 Mathews 等人提出的模型预测的这些三链体的值平均相差 0.5 kcal/mol。[Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 7287-7292]。这里报告的 24 个三链体的数据与之前发表的 5 个三链体的数据相结合。得出了一个新的模型来预测以前未测量的三链体的自由能贡献。使用该建议模型预测的测量值和测量值之间的平均绝对差异为 0.3 kcal/mol。这些新的实验数据和更新的预测模型可以更准确地计算包含三链体的 RNA 茎环的自由能,并且可以进一步提高从序列预测二级结构的能力。

相似文献

1
Thermodynamic characterization of RNA triloops.
Biochemistry. 2010 Oct 26;49(42):9058-62. doi: 10.1021/bi101164s.
2
Thermodynamic characterization of naturally occurring RNA tetraloops.
RNA. 2010 Feb;16(2):417-29. doi: 10.1261/rna.1773110. Epub 2010 Jan 4.
3
Thermodynamic characterization of RNA duplexes containing naturally occurring 1 x 2 nucleotide internal loops.
Biochemistry. 2007 Dec 18;46(50):14715-24. doi: 10.1021/bi701024w. Epub 2007 Nov 20.
4
Thermodynamic characterization of single mismatches found in naturally occurring RNA.
Biochemistry. 2007 Nov 20;46(46):13425-36. doi: 10.1021/bi701311c. Epub 2007 Oct 24.
5
Thermodynamic characterization of RNA 2 × 3 nucleotide internal loops.
Biochemistry. 2012 Jul 3;51(26):5359-68. doi: 10.1021/bi3001227. Epub 2012 Jun 21.
6
Thermodynamic characterization of tandem mismatches found in naturally occurring RNA.
Nucleic Acids Res. 2009 Aug;37(14):4696-706. doi: 10.1093/nar/gkp465. Epub 2009 Jun 9.
7
Sequence dependence of the stability of RNA hairpin molecules with six nucleotide loops.
Biochemistry. 2006 Feb 7;45(5):1400-7. doi: 10.1021/bi051750u.
10
Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.
Biochemistry. 2015 Sep 1;54(34):5290-6. doi: 10.1021/acs.biochem.5b00474. Epub 2015 Aug 19.

引用本文的文献

1
MeltR software provides facile determination of nucleic acid thermodynamics.
Biophys Rep (N Y). 2023 Mar 2;3(2):100101. doi: 10.1016/j.bpr.2023.100101. eCollection 2023 Jun 14.
2
The Origin of Translation: Bridging the Nucleotides and Peptides.
Int J Mol Sci. 2022 Dec 22;24(1):197. doi: 10.3390/ijms24010197.
3
Thermodynamic characterization of naturally occurring RNA pentaloops.
RNA. 2022 Jun;28(6):832-841. doi: 10.1261/rna.078915.121. Epub 2022 Mar 22.
4
Estimating uncertainty in predicted folding free energy changes of RNA secondary structures.
RNA. 2019 Jun;25(6):747-754. doi: 10.1261/rna.069203.118. Epub 2019 Apr 5.
6
Blind prediction of noncanonical RNA structure at atomic accuracy.
Sci Adv. 2018 May 25;4(5):eaar5316. doi: 10.1126/sciadv.aar5316. eCollection 2018 May.
7
Evolutionary Algorithm for RNA Secondary Structure Prediction Based on Simulated SHAPE Data.
PLoS One. 2016 Nov 28;11(11):e0166965. doi: 10.1371/journal.pone.0166965. eCollection 2016.
8
Formation of Tertiary Interactions during rRNA GTPase Center Folding.
J Mol Biol. 2015 Aug 28;427(17):2799-815. doi: 10.1016/j.jmb.2015.07.013. Epub 2015 Jul 22.
10
Improved model to predict the free energy contribution of trinucleotide bulges to RNA duplex stability.
Biochemistry. 2014 Jun 3;53(21):3502-8. doi: 10.1021/bi500204e. Epub 2014 May 22.

本文引用的文献

1
Thermodynamic characterization of naturally occurring RNA tetraloops.
RNA. 2010 Feb;16(2):417-29. doi: 10.1261/rna.1773110. Epub 2010 Jan 4.
2
Structures, kinetics, thermodynamics, and biological functions of RNA hairpins.
Annu Rev Phys Chem. 2008;59:79-103. doi: 10.1146/annurev.physchem.59.032607.093743.
3
Nearest neighbor parameters for inosine x uridine pairs in RNA duplexes.
Biochemistry. 2007 Apr 17;46(15):4625-34. doi: 10.1021/bi0616910. Epub 2007 Mar 23.
4
A set of nearest neighbor parameters for predicting the enthalpy change of RNA secondary structure formation.
Nucleic Acids Res. 2006;34(17):4912-24. doi: 10.1093/nar/gkl472. Epub 2006 Sep 18.
5
Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7287-92. doi: 10.1073/pnas.0401799101. Epub 2004 May 3.
6
A plant virus replication system to assay the formation of RNA pseudotriloop motifs in RNA-protein interactions.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12596-600. doi: 10.1073/pnas.2135413100. Epub 2003 Oct 20.
7
Refined solution structure of the iron-responsive element RNA using residual dipolar couplings.
J Mol Biol. 2003 Feb 28;326(4):1037-50. doi: 10.1016/s0022-2836(02)01431-6.
10
Structure of an RNA hairpin from HRV-14.
Biochemistry. 2001 Jul 10;40(27):8055-64. doi: 10.1021/bi010572b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验