Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany.
J Neurosci. 2010 Sep 15;30(37):12329-39. doi: 10.1523/JNEUROSCI.5745-09.2010.
Audiovisual synchrony enables integration of dynamic visual and auditory signals into a more robust and reliable multisensory percept. In this fMRI study, we investigated the neural mechanisms by which audiovisual synchrony facilitates shape and motion discrimination under degraded visual conditions. Subjects were presented with visual patterns that were rotated by discrete increments at irregular and unpredictable intervals while partially obscured by a dynamic noise mask. On synchronous trials, each rotation coincided with an auditory click. On asynchronous trials, clicks were noncoincident with the rotational movements (but with identical temporal statistics). Subjects discriminated shape or rotational motion profile of the partially hidden visual stimuli. Regardless of task context, synchronous signals increased activations bilaterally in (1) calcarine sulcus (CaS) extending into ventral occipitotemporal cortex and (2) Heschl's gyrus extending into planum temporale (HG/PT) compared with asynchronous signals. Adjacent to these automatic synchrony effects, synchrony-induced activations in lateral occipital (LO) regions were amplified bilaterally during shape discrimination and in the right posterior superior temporal sulcus (pSTS) during motion discrimination. Subjects' synchrony-induced benefits in motion discrimination significantly predicted blood oxygenation level-dependent synchrony effects in V5/hMT+. According to dynamic causal modeling, audiovisual synchrony increased connectivity between CaS and HG/PT bidirectionally, whereas shape and motion tasks increased forwards connectivity from CaS to LO or to pSTS, respectively. To increase the salience of partially obscured moving objects, audiovisual synchrony may amplify visual activations by increasing the connectivity between low level visual and auditory areas. These automatic synchrony-induced response amplifications may then be gated to higher order areas according to behavioral relevance and task context.
视听同步使动态视觉和听觉信号能够整合为更稳健和可靠的多感官感知。在这项 fMRI 研究中,我们研究了视听同步在视觉条件下降的情况下促进形状和运动辨别背后的神经机制。研究对象观看了以不规律和不可预测的间隔进行离散增量旋转的视觉图案,同时被动态噪声掩蔽部分遮挡。在同步试验中,每次旋转都与听觉点击相吻合。在异步试验中,点击与旋转运动(但具有相同的时间统计)不同步。研究对象辨别了部分隐藏的视觉刺激的形状或旋转运动轮廓。无论任务上下文如何,与异步信号相比,同步信号都会在(1)楔前回(CaS)双侧增加激活,该回延伸到腹侧枕颞皮质和(2)Heschl 回延伸到颞平面(HG/PT)。与这些自动同步效应相邻,在形状辨别过程中,双侧外侧枕叶(LO)区域的同步诱导激活会放大,而在运动辨别过程中,右侧后颞上沟(pSTS)的同步诱导激活会放大。研究对象在运动辨别中的同步诱导获益显著预测了 V5/hMT+ 中基于血氧水平依赖的同步效应。根据动态因果建模,视听同步双向增加了 CaS 和 HG/PT 之间的连接,而形状和运动任务分别增加了从 CaS 到 LO 或到 pSTS 的前向连接。为了提高部分遮挡运动物体的显著性,视听同步可以通过增加低水平视觉和听觉区域之间的连接来放大视觉激活。然后,这些自动同步诱导的响应放大可以根据行为相关性和任务上下文,被门控到更高阶的区域。