Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
Phys Med Biol. 2010 Oct 7;55(19):5913-32. doi: 10.1088/0031-9155/55/19/019. Epub 2010 Sep 16.
Singlet oxygen (¹O₂) direct dosimetry and photosensitizer fluorescence photobleaching are being investigated and applied as dosimetric tools during 5-aminolevulinic acid (ALA)-induced protophorphyrin IX (PpIX) photodynamic therapy (PDT) of normal skin and skin cancers. The correlations of photosensitizer fluorescence and singlet oxygen luminescence (SOL) emission signals to ¹O2 distribution and cumulative ¹O₂dose are difficult to interpret because of the temporal and spatial variations of three essential components (light fluence rate, photosensitizer concentration and oxygen concentration) in PDT. A one-dimensional model is proposed in this paper to simulate the dynamic process of ALA-PDT of normal human skin in order to investigate the time-resolved evolution of PpIX, ground-state oxygen (³O₂and ¹O₂ distributions. The model incorporates a simplified three-layer semi-infinite skin tissue, Monte Carlo simulations of excitation light fluence and both PpIX fluorescence and SOL emission signals reaching the skin surface, ¹O₂-mediated photobleaching mechanism for updating PpIX, ³O₂ and ¹O₂ distributions after the delivery of each light dose increment, ground-state oxygen supply by diffusion from the atmosphere and perfusion from blood vessels, a cumulative ¹O₂-dependent threshold vascular response, and the initial non-uniform distribution of PpIX. The PpIX fluorescence simulated using this model is compared with clinical data reported by Cottrell et al (2008 Clin. Cancer Res. 14 4475-83) for a range of irradiances (10-150 mW cm⁻²). Except for the vascular response, one set of parameters is used to fit data at all irradiances. The time-resolved depth-dependent distributions of PpIX, ³O₂ and ¹O₂ at representative irradiances are presented and discussed in this paper, as well as the PDT-induced vascular response at different depths. Tissue hypoxia and shutdown of oxygen supply occur in the upper dermis, where PpIX is also preserved at the end of treatment.
单线态氧(¹O₂)直接剂量测定和光敏剂荧光光漂白正在被研究和应用作为 5-氨基酮戊酸(ALA)诱导原卟啉 IX(PpIX)光动力疗法(PDT)中正常皮肤和皮肤癌的剂量测定工具。由于 PDT 中三个基本成分(光辐照度、光敏剂浓度和氧浓度)的时间和空间变化,光敏剂荧光和单线态氧发光(SOL)发射信号与¹O2分布和累积¹O₂剂量的相关性难以解释。本文提出了一个一维模型来模拟正常人体皮肤的 ALA-PDT 动态过程,以研究 PpIX、基态氧(³O₂和¹O₂分布的时间分辨演化。该模型结合了一个简化的三层半无限皮肤组织,对激发光辐照度的蒙特卡罗模拟,以及到达皮肤表面的 PpIX 荧光和 SOL 发射信号,¹O₂介导的 PpIX 光漂白机制,在每次光剂量增加后更新 ³O₂和¹O₂分布,通过扩散从大气和从血管灌注供应基态氧,累积的¹O₂依赖性阈值血管反应,以及 PpIX 的初始非均匀分布。使用该模型模拟的 PpIX 荧光与 Cottrell 等人(2008 Clin. Cancer Res. 14 4475-83)报告的临床数据进行了比较,范围为辐照度(10-150 mW cm⁻²)。除了血管反应外,一组参数用于拟合所有辐照度下的数据。本文还介绍和讨论了在代表性辐照度下 PpIX、³O₂和¹O₂的深度相关时间分辨分布,以及不同深度的 PDT 诱导血管反应。在真皮上层,组织缺氧和氧气供应中断,在治疗结束时 PpIX 也被保留。