Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, 1300 York Ave., New York, NY 10065, USA.
J Struct Biol. 2011 Mar;173(3):445-50. doi: 10.1016/j.jsb.2010.09.012. Epub 2010 Sep 18.
The registration of volumetric structures in real space involves geometric and density transformations that align a target map and a probe map in the best way possible. Many computational docking strategies exist for finding the geometric transformations that superimpose maps, but the problem of finding an optimal density transformation, for the purposes of difference calculations or segmentation, has received little attention in the literature. We report results based on simulated and experimental electron microscopy maps, showing that a single scale factor (gain) may be insufficient when it comes to minimizing the density discrepancy between an aligned target and probe. We propose an affine transformation, with gain and bias, that is parameterized by known surface isovalues and by an interactive centering of the "cancellation peak" in the surface thresholded difference map histogram. The proposed approach minimizes discrepancies across a wide range of interior densities. Owing to having only two parameters, it avoids overfitting and requires only minimal knowledge of the probe and target maps. The linear transformation also preserves phases and relative amplitudes in Fourier space. The histogram matching strategy was implemented in the newly revised volhist tool of the Situs package, version 2.6.
在实空间中注册体积结构涉及到几何和密度变换,这些变换以最佳的方式对齐目标图和探针图。存在许多用于寻找叠加图的几何变换的计算对接策略,但在文献中,用于差异计算或分割的最佳密度变换的问题几乎没有得到关注。我们报告了基于模拟和实验电子显微镜图的结果,表明在对齐的目标和探针之间最小化密度差异时,单个比例因子(增益)可能是不够的。我们提出了一种具有增益和偏差的仿射变换,该变换由已知的表面等位面值和表面阈值差图直方图中“抵消峰”的交互式中心来参数化。所提出的方法可以最小化广泛的内部密度差异。由于只有两个参数,它避免了过度拟合,并且只需要探针和目标图的最小知识。线性变换还保留了傅里叶空间中的相位和相对幅度。直方图匹配策略已在 Situs 包的新版本 2.6 中的新修订的 volhist 工具中实现。