Suppr超能文献

匹配具有增益和偏置的不同生物物理起源的结构密度。

Matching structural densities from different biophysical origins with gain and bias.

机构信息

Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Medical College of Cornell University, 1300 York Ave., New York, NY 10065, USA.

出版信息

J Struct Biol. 2011 Mar;173(3):445-50. doi: 10.1016/j.jsb.2010.09.012. Epub 2010 Sep 18.

Abstract

The registration of volumetric structures in real space involves geometric and density transformations that align a target map and a probe map in the best way possible. Many computational docking strategies exist for finding the geometric transformations that superimpose maps, but the problem of finding an optimal density transformation, for the purposes of difference calculations or segmentation, has received little attention in the literature. We report results based on simulated and experimental electron microscopy maps, showing that a single scale factor (gain) may be insufficient when it comes to minimizing the density discrepancy between an aligned target and probe. We propose an affine transformation, with gain and bias, that is parameterized by known surface isovalues and by an interactive centering of the "cancellation peak" in the surface thresholded difference map histogram. The proposed approach minimizes discrepancies across a wide range of interior densities. Owing to having only two parameters, it avoids overfitting and requires only minimal knowledge of the probe and target maps. The linear transformation also preserves phases and relative amplitudes in Fourier space. The histogram matching strategy was implemented in the newly revised volhist tool of the Situs package, version 2.6.

摘要

在实空间中注册体积结构涉及到几何和密度变换,这些变换以最佳的方式对齐目标图和探针图。存在许多用于寻找叠加图的几何变换的计算对接策略,但在文献中,用于差异计算或分割的最佳密度变换的问题几乎没有得到关注。我们报告了基于模拟和实验电子显微镜图的结果,表明在对齐的目标和探针之间最小化密度差异时,单个比例因子(增益)可能是不够的。我们提出了一种具有增益和偏差的仿射变换,该变换由已知的表面等位面值和表面阈值差图直方图中“抵消峰”的交互式中心来参数化。所提出的方法可以最小化广泛的内部密度差异。由于只有两个参数,它避免了过度拟合,并且只需要探针和目标图的最小知识。线性变换还保留了傅里叶空间中的相位和相对幅度。直方图匹配策略已在 Situs 包的新版本 2.6 中的新修订的 volhist 工具中实现。

相似文献

1
Matching structural densities from different biophysical origins with gain and bias.
J Struct Biol. 2011 Mar;173(3):445-50. doi: 10.1016/j.jsb.2010.09.012. Epub 2010 Sep 18.
4
PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
J Nucl Med. 2014 Dec;55(12):2071-7. doi: 10.2967/jnumed.114.143958. Epub 2014 Nov 20.
5
Groupwise geometric and photometric direct image registration.
IEEE Trans Pattern Anal Mach Intell. 2008 Dec;30(12):2098-108. doi: 10.1109/TPAMI.2008.22.
6
Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes.
J Struct Biol. 2011 Mar;173(3):428-35. doi: 10.1016/j.jsb.2010.11.002. Epub 2010 Nov 13.
7
Auto3DCryoMap: an automated particle alignment approach for 3D cryo-EM density map reconstruction.
BMC Bioinformatics. 2020 Dec 28;21(Suppl 21):534. doi: 10.1186/s12859-020-03885-9.
8
Numerical geometry of map and model assessment.
J Struct Biol. 2015 Nov;192(2):255-61. doi: 10.1016/j.jsb.2015.09.011. Epub 2015 Sep 28.
9
Edged watershed segmentation: a semi-interactive algorithm for segmentation of low-resolution maps from electron cryomicroscopy.
J Struct Biol. 2011 Oct;176(1):127-32. doi: 10.1016/j.jsb.2011.06.012. Epub 2011 Jul 6.
10
Direct calculation of cryo-EM and crystallographic model maps for real-space refinement.
Acta Crystallogr D Struct Biol. 2022 Dec 1;78(Pt 12):1451-1468. doi: 10.1107/S2059798322010907. Epub 2022 Nov 25.

引用本文的文献

1
Flexible fitting of AlphaFold2-predicted models to cryo-EM density maps using elastic network models: a methodical affirmation.
Bioinform Adv. 2024 Nov 18;5(1):vbae181. doi: 10.1093/bioadv/vbae181. eCollection 2025.
2
ModeHunter: A Package for the Reductionist Analysis, Animation, and Application of Elastic Biomolecular Motion.
J Phys Chem B. 2025 Jan 23;129(3):825-834. doi: 10.1021/acs.jpcb.4c05077. Epub 2025 Jan 10.
3
Identifying and Visualizing Macromolecular Flexibility in Structural Biology.
Front Mol Biosci. 2016 Sep 9;3:47. doi: 10.3389/fmolb.2016.00047. eCollection 2016.
4
Conventions and workflows for using Situs.
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):344-51. doi: 10.1107/S0907444911049791. Epub 2012 Mar 16.

本文引用的文献

1
Using Situs for the integration of multi-resolution structures.
Biophys Rev. 2010 Feb;2(1):21-27. doi: 10.1007/s12551-009-0026-3. Epub 2010 Jan 8.
2
UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions.
Acta Crystallogr D Biol Crystallogr. 2009 Jul;65(Pt 7):651-8. doi: 10.1107/S0907444909008671. Epub 2009 Jun 20.
3
Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis.
Structure. 2008 Dec 10;16(12):1770-6. doi: 10.1016/j.str.2008.10.011.
4
Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity.
J Mol Biol. 2008 Dec 26;384(4):780-97. doi: 10.1016/j.jmb.2008.10.013. Epub 2008 Oct 14.
5
UCSF Chimera--a visualization system for exploratory research and analysis.
J Comput Chem. 2004 Oct;25(13):1605-12. doi: 10.1002/jcc.20084.
7
New electron microscopy database and deposition system.
Trends Biochem Sci. 2002 Nov;27(11):589. doi: 10.1016/s0968-0004(02)02176-x.
8
Multi-resolution contour-based fitting of macromolecular structures.
J Mol Biol. 2002 Mar 29;317(3):375-84. doi: 10.1006/jmbi.2002.5438.
9
Modeling tricks and fitting techniques for multiresolution structures.
Structure. 2001 Sep;9(9):779-88. doi: 10.1016/s0969-2126(01)00648-7.
10
Evidence for cleft closure in actomyosin upon ADP release.
Nat Struct Biol. 2000 Dec;7(12):1147-55. doi: 10.1038/82008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验