Suppr超能文献

甲基黄嘌呤、癫痫发作与兴奋性毒性

Methylxanthines, seizures, and excitotoxicity.

作者信息

Boison Detlev

机构信息

R.S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.

出版信息

Handb Exp Pharmacol. 2011(200):251-66. doi: 10.1007/978-3-642-13443-2_9.

Abstract

Clinical evidence, in particular the wide use of theophylline as a bronchodilator, suggests that methylxanthines can cause seizures in patients without known underlying epilepsy. Theophylline is also known to be an added risk factor for seizure exacerbation in patients with epilepsy. The proconvulsant activity of methylxanthines can best be explained by their antagonizing the brain's own anticonvulsant adenosine. Recent evidence suggests that adenosine dysfunction is a pathological hallmark of epilepsy contributing to seizure generation and seizure spread. Conversely, adenosine augmentation therapies are effective in seizure suppression and prevention, whereas adenosine receptor antagonists such as methylxanthines generally exacerbate seizures. The impact of the methylxanthines caffeine and theophylline on seizures and excitotoxicity depends on timing, dose, and acute versus chronic use. New findings suggest a role of free radicals in theophylline-induced seizures, and adenosine-independent mechanisms for seizure generation have been proposed.

摘要

临床证据,尤其是氨茶碱作为支气管扩张剂的广泛使用,表明甲基黄嘌呤可在无已知潜在癫痫的患者中引发癫痫发作。氨茶碱也是癫痫患者癫痫发作加剧的一个额外风险因素。甲基黄嘌呤的促惊厥活性最好用其拮抗大脑自身的抗惊厥腺苷来解释。最近的证据表明,腺苷功能障碍是癫痫的一个病理标志,有助于癫痫发作的产生和传播。相反,腺苷增强疗法在癫痫抑制和预防方面是有效的,而腺苷受体拮抗剂如甲基黄嘌呤通常会加剧癫痫发作。甲基黄嘌呤咖啡因和氨茶碱对癫痫发作和兴奋性毒性的影响取决于时间、剂量以及急性与慢性使用情况。新的研究结果表明自由基在氨茶碱诱导的癫痫发作中起作用,并且已经提出了与腺苷无关的癫痫发作产生机制。

相似文献

1
Methylxanthines, seizures, and excitotoxicity.
Handb Exp Pharmacol. 2011(200):251-66. doi: 10.1007/978-3-642-13443-2_9.
2
Potent convulsant actions of the adenosine receptor antagonist, xanthine amine congener (XAC).
Life Sci. 1989;45(8):719-28. doi: 10.1016/0024-3205(89)90091-x.
3
Methylxanthine-evoked perturbation of spontaneous and evoked activities in isolated newborn rat hippocampal networks.
Neuroscience. 2015 Aug 20;301:106-20. doi: 10.1016/j.neuroscience.2015.05.069. Epub 2015 Jun 3.
5
Potentiating effects of methylxanthines on teratogenicity of mitomycin C in mice.
Teratology. 1983 Oct;28(2):243-7. doi: 10.1002/tera.1420280214.
6
Methylxanthines do not affect rhythmogenic preBötC inspiratory network activity but impair bursting of preBötC-driven motoneurons.
Neuroscience. 2013;255:158-76. doi: 10.1016/j.neuroscience.2013.09.058. Epub 2013 Oct 10.
8
Safety Assessment of Methylxanthines as Used in Cosmetics.
Int J Toxicol. 2024 Oct;43(4_suppl):42-77. doi: 10.1177/10915818241260282. Epub 2024 Jul 24.
9
The toxicology of cocoa and methylxanthines: a review of the literature.
Crit Rev Toxicol. 1982;9(4):275-312. doi: 10.3109/10408448209037495.
10
Neurotoxic convulsions induced by theophylline and its metabolites in mice.
Biol Pharm Bull. 1996 Jun;19(6):869-72. doi: 10.1248/bpb.19.869.

引用本文的文献

1
The Role of Xenobiotic Caffeine on Cardiovascular Health: Promises and Challenges.
J Xenobiot. 2025 Mar 31;15(2):51. doi: 10.3390/jox15020051.
2
Neuroglia and brain energy metabolism.
Handb Clin Neurol. 2025;209:117-126. doi: 10.1016/B978-0-443-19104-6.00007-3.
4
Could the serum glucose/potassium ratio offer an early reliable predictor of life-threatening events in acute methylxanthine intoxication?
Toxicol Res (Camb). 2023 Mar 30;12(2):310-320. doi: 10.1093/toxres/tfad023. eCollection 2023 Apr.
5
Astrocyte-neuron circuits in epilepsy.
Neurobiol Dis. 2023 Apr;179:106058. doi: 10.1016/j.nbd.2023.106058. Epub 2023 Mar 1.
7
Astrocytes in the initiation and progression of epilepsy.
Nat Rev Neurol. 2022 Dec;18(12):707-722. doi: 10.1038/s41582-022-00727-5. Epub 2022 Oct 24.
8
The metabolic basis of epilepsy.
Nat Rev Neurol. 2022 Jun;18(6):333-347. doi: 10.1038/s41582-022-00651-8. Epub 2022 Mar 31.
9
Time to Recover From Daily Caffeine Intake.
Front Nutr. 2022 Feb 2;8:787225. doi: 10.3389/fnut.2021.787225. eCollection 2021.
10
A Neurochemical and Electrophysiological Study on the Combined Effects of Caffeine and Nicotine in the Cortex of Rats.
Basic Clin Neurosci. 2021 Sep-Oct;12(5):681-692. doi: 10.32598/bcn.2021.2100.1. Epub 2021 Sep 1.

本文引用的文献

1
Uncoupling of astrogliosis from epileptogenesis in adenosine kinase (ADK) transgenic mice.
Neuron Glia Biol. 2008 May;4(2):91-9. doi: 10.1017/S1740925X09990135. Epub 2009 Aug 13.
2
A novel mouse model for sudden unexpected death in epilepsy (SUDEP): role of impaired adenosine clearance.
Epilepsia. 2010 Mar;51(3):465-8. doi: 10.1111/j.1528-1167.2009.02248.x. Epub 2009 Aug 8.
3
Adenosine A2A receptor deficient mice are partially resistant to limbic seizures.
Naunyn Schmiedebergs Arch Pharmacol. 2009 Sep;380(3):223-32. doi: 10.1007/s00210-009-0426-8. Epub 2009 Jun 2.
4
Pannexin 1: the molecular substrate of astrocyte "hemichannels".
J Neurosci. 2009 May 27;29(21):7092-7. doi: 10.1523/JNEUROSCI.6062-08.2009.
5
Antiepileptic effects of silk-polymer based adenosine release in kindled rats.
Exp Neurol. 2009 Sep;219(1):126-35. doi: 10.1016/j.expneurol.2009.05.018. Epub 2009 May 19.
6
Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies.
Epilepsy Res. 2009 Aug;85(2-3):131-41. doi: 10.1016/j.eplepsyres.2009.03.019. Epub 2009 May 9.
7
Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans.
Eur J Pharmacol. 2009 May 21;610(1-3):1-11. doi: 10.1016/j.ejphar.2009.03.025. Epub 2009 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验