Jacobs Retina Center at the Shiley Eye Center, University of California San Diego, La Jolla, 92093, USA.
Graefes Arch Clin Exp Ophthalmol. 2011 Apr;249(4):491-8. doi: 10.1007/s00417-010-1511-x. Epub 2010 Sep 24.
To use machine learning classifiers (MLCs) to seek differences in visual fields (VFs) between normal eyes and eyes of HIV+ patients; to find the effect of immunodeficiency on VFs and to compare the effectiveness of MLCs to commonly-used Statpac global indices in analyzing standard automated perimetry (SAP).
The high CD4 group consisted of 70 eyes of 39 HIV-positive patients with good immune status (CD4 counts were never <100/ml). The low CD4 group had 59 eyes of 38 HIV-positive patients with CD4 cell counts <100/ml at some period of time lasting for at least 6 months. The normal group consisted of 61 eyes of 52 HIV-negative individuals. We used a Humphrey Visual Field Analyzer, SAP full threshold program 24-2, and routine settings for evaluating VFs. We trained and tested support vector machine (SVM) machine learning classifiers to distinguish fields from normal subjects and high and CD4 groups separately. Receiver operating characteristic (ROC) curves measured the discrimination of each classifier, and areas under ROC were statistically compared.
Low CD4 HIV patients: with SVM, the AUROC was 0.790 ± 0.042. SVM and MD each significantly differed from chance decision, with p < .00005. High CD4 HIV patients: the SVM AUROC of 0.664 ± 0.047 and MD were each significantly better than chance (p = .041, p = .05 respectively).
Eyes from both low and high CD4 HIV+ patients have VFs defects indicating retinal damage. Generalized learning classifier, SVM, and a Statpac classifier, MD, are effective at detecting HIV eyes that have field defects, even when these defects are subtle.
利用机器学习分类器(MLC)寻找正常眼与 HIV+患者眼中视野(VF)的差异;发现免疫缺陷对视功能的影响,并比较 MLC 在分析标准自动视野计(SAP)中的效果与常用 Statpac 全局指数的差异。
高 CD4 组包括 39 名 HIV 阳性患者的 70 只眼,这些患者免疫状态良好(CD4 计数从未<100/ml)。低 CD4 组包括 38 名 HIV 阳性患者的 59 只眼,这些患者在至少 6 个月的一段时间内 CD4 细胞计数<100/ml。正常组包括 52 名 HIV 阴性个体的 61 只眼。我们使用 Humphrey 视野分析仪、SAP 全阈值程序 24-2 和常规设置评估 VF。我们训练和测试支持向量机(SVM)机器学习分类器,以分别区分正常受试者和高 CD4 组的视野。接收者操作特征(ROC)曲线测量每个分类器的辨别能力,ROC 下面积进行统计学比较。
低 CD4 HIV 患者:使用 SVM 时,AUROC 为 0.790±0.042。SVM 和 MD 均显著优于随机决策,p<0.00005。高 CD4 HIV 患者:SVM 的 AUROC 为 0.664±0.047,MD 均显著优于随机决策(p=0.041,p=0.05)。
来自低 CD4 和高 CD4 HIV+患者的眼睛都存在 VF 缺陷,表明视网膜损伤。广义学习分类器 SVM 和 Statpac 分类器 MD 都有效地检测出具有视野缺陷的 HIV 眼,即使这些缺陷很细微。