Dean David S, Horgan Ron R, Naji Ali, Podgornik Rudolf
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 1):051117. doi: 10.1103/PhysRevE.81.051117. Epub 2010 May 13.
We analyze the effects of disorder on the thermal Casimir interaction for the case of two semi-infinite planar slabs across an intervening homogeneous unstructured dielectric. The semi-infinite bounding layers are assumed to be composed of plane-parallel layers of random dielectric materials. We show that the effective thermal Casimir interaction at long distances is self-averaging and can be written in the same form as the one between nonrandom media but with the effective dielectric tensor of the corresponding random media. On the contrary, the behavior at short distances becomes random, and thus sample dependent, dominated by the local values of the dielectric constants proximal to each other across the central homogeneous unstructured dielectric layer. We extend these results to the regime of intermediate slab separations by using perturbation theory for weak disorder as well as by extensive numerical simulations for a number of systems where the dielectric function has a log-normal distribution. Numerical simulation completely corroborates all the main features of the disorder dependent thermal Casimir interaction deduced analytically.
我们分析了无序对两个半无限平面平板之间热卡西米尔相互作用的影响,这两个平板隔着一层均匀的无结构电介质。假设半无限边界层由随机介电材料的平面平行层组成。我们表明,长距离处的有效热卡西米尔相互作用是自平均的,并且可以写成与非随机介质之间相互作用相同的形式,但使用相应随机介质的有效介电张量。相反,短距离处的行为变得随机,因此依赖于样品,由穿过中央均匀无结构电介质层彼此相邻的介电常数的局部值主导。我们通过对弱无序使用微扰理论以及对介电函数具有对数正态分布的多个系统进行广泛的数值模拟,将这些结果扩展到中间平板间距的范围。数值模拟完全证实了通过解析推导得出的与无序相关的热卡西米尔相互作用的所有主要特征。