Chau C D, Sevink G J A, Fraaije J G E M
Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 2):026705. doi: 10.1103/PhysRevE.82.026705. Epub 2010 Aug 24.
We report a new and efficient factorized algorithm for the determination of the adaptive compound mobility matrix B in a stochastic quasi-Newton method (S-QN) that does not require additional potential evaluations. For one-dimensional and two-dimensional test systems, we previously showed that S-QN gives rise to efficient configurational space sampling with good thermodynamic consistency [C. D. Chau, G. J. A. Sevink, and J. G. E. M. Fraaije, J. Chem. Phys. 128, 244110 (2008)]. Potential applications of S-QN are quite ambitious, and include structure optimization, analysis of correlations and automated extraction of cooperative modes. However, the potential can only be fully exploited if the computational and memory requirements of the original algorithm are significantly reduced. In this paper, we consider a factorized mobility matrix B=JJ(T) and focus on the nontrivial fundamentals of an efficient algorithm for updating the noise multiplier J . The new algorithm requires O(n2) multiplications per time step instead of the O(n3) multiplications in the original scheme due to Choleski decomposition. In a recursive form, the update scheme circumvents matrix storage and enables limited-memory implementation, in the spirit of the well-known limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, allowing for a further reduction of the computational effort to O(n). We analyze in detail the performance of the factorized (FSU) and limited-memory (L-FSU) algorithms in terms of convergence and (multiscale) sampling, for an elementary but relevant system that involves multiple time and length scales. Finally, we use this analysis to formulate conditions for the simulation of the complex high-dimensional potential energy landscapes of interest.
我们报告了一种新的高效因式分解算法,用于在随机拟牛顿法(S-QN)中确定自适应复合迁移率矩阵B,该算法无需额外的势能评估。对于一维和二维测试系统,我们之前表明S-QN能实现高效的构型空间采样,并具有良好的热力学一致性[C. D. Chau, G. J. A. Sevink, and J. G. E. M. Fraaije, J. Chem. Phys. 128, 244110 (2008)]。S-QN的潜在应用相当广泛,包括结构优化、相关性分析以及合作模式的自动提取。然而,只有在显著降低原始算法的计算和内存需求时,其潜力才能得到充分发挥。在本文中,我们考虑因式分解的迁移率矩阵B = JJ(T),并专注于更新噪声乘数J的高效算法的重要基本原理。新算法每个时间步需要O(n2)次乘法运算,而不是原始方案中由于Cholesky分解所需的O(n3)次乘法运算。以递归形式表示,更新方案避免了矩阵存储,并能实现有限内存实现,这与著名的有限内存Broyden-Fletcher-Goldfarb-Shanno(L-BFGS)方法类似,从而将计算量进一步降低到O(n)。对于一个涉及多个时间和长度尺度的基本但相关的系统,我们详细分析了因式分解(FSU)和有限内存(L-FSU)算法在收敛性和(多尺度)采样方面的性能。最后,我们利用这一分析来制定模拟感兴趣的复杂高维势能面的条件。