Suppr超能文献

无催化剂和溶剂的“点击”化学:一种从大豆油中获得交联生物聚合物的简便方法。

Catalyst- and solvent-free "click" chemistry: a facile approach to obtain cross-linked biopolymers from soybean oil.

机构信息

Department of Chemistry and Kansas Polymer Research Center, Pittsburg State University, Pittsburg, Kansas 66762.

出版信息

Biomacromolecules. 2010 Nov 8;11(11):2960-5. doi: 10.1021/bm100772g. Epub 2010 Sep 28.

Abstract

A series of highly cross-linked biopolymers (1-10) was obtained by the copper-catalyzed and the thermal polyaddition of alkynated and azidated soybean oil with suitable diazides and diynes, respectively. Thermal polymerization (heating at 100 °C), which requires no catalyst and no solvent, was observed to be a superior approach, yielding polymers (6-10) with more homogeneous cross-linking. The temperature of decomposition of 6-10 was narrower (∼170 °C) than that of the polymers (1-5) obtained by the copper-catalyzed method (∼210 °C). The glass-transition temperatures of 1-5 were higher (Tg ranging from 9 to 80 °C) than those of the comparable polymers obtained thermally (Tg ranging from -13 to 45 °C) because of the catalyst entrapped in the networks of 1-5. Furthermore, the thermal approach requires less time and is higher yielding, establishing the suitability and ease of polymerization of vegetable oil-derived alkynes or azides through thermal "Click" chemistry. The effects of the structure of the monomers and the nature of the linkers on the thermal properties of 1-10 (e.g., Tg and decomposition temperatures) are detailed.

摘要

通过铜催化和热加成反应,将炔丙基化和叠氮化大豆油分别与合适的叠氮化物和二炔烃反应,得到一系列高度交联的生物聚合物(1-10)。无需催化剂和溶剂的热聚合(在 100°C 下加热)被观察为一种优越的方法,可得到具有更均匀交联的聚合物(6-10)。6-10 的分解温度范围较窄(约 170°C),而通过铜催化方法获得的聚合物(1-5)的分解温度范围较宽(约 210°C)。1-5 的玻璃化转变温度较高(Tg 范围为 9 至 80°C),而通过热聚合得到的可比聚合物的 Tg 较低(Tg 范围为-13 至 45°C),这是因为催化剂被困在 1-5 的网络中。此外,热方法需要的时间更短,产率更高,证明了通过热“点击”化学聚合植物油衍生的炔烃或叠氮化物的适用性和容易性。详细说明了单体结构和连接体性质对 1-10 的热性能(例如 Tg 和分解温度)的影响。

相似文献

1
Catalyst- and solvent-free "click" chemistry: a facile approach to obtain cross-linked biopolymers from soybean oil.
Biomacromolecules. 2010 Nov 8;11(11):2960-5. doi: 10.1021/bm100772g. Epub 2010 Sep 28.
2
Biopolymers from vegetable oils via catalyst- and solvent-free "click" chemistry: effects of cross-linking density.
Biomacromolecules. 2012 Jan 9;13(1):261-6. doi: 10.1021/bm201554x. Epub 2011 Dec 16.
3
Silicon-containing soybean-oil-based copolymers. Synthesis and properties.
Biomacromolecules. 2009 Sep 14;10(9):2678-85. doi: 10.1021/bm9006166.
6
Rapid and efficient DNA strand cross-linking by click chemistry.
Chembiochem. 2008 May 23;9(8):1280-5. doi: 10.1002/cbic.200800006.
7
Polymeric ligands as homogeneous, reusable catalyst systems for copper assisted click chemistry.
Chem Commun (Camb). 2010 Dec 14;46(46):8719-21. doi: 10.1039/c0cc01451f. Epub 2010 Aug 20.
9
Multifunctional Giant Amphiphiles via simultaneous copper(I)-catalyzed azide-alkyne cycloaddition and living radical polymerization.
Chem Commun (Camb). 2012 Feb 1;48(10):1586-8. doi: 10.1039/c1cc15075h. Epub 2011 Sep 29.
10
Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups.
J Am Chem Soc. 2011 Oct 19;133(41):16698-706. doi: 10.1021/ja207635f. Epub 2011 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验