Suppr超能文献

用于显微镜聚焦分类的自动化训练数据生成

Automated training data generation for microscopy focus classification.

作者信息

Gao Dashan, Padfield Dirk, Rittscher Jens, McKay Richard

机构信息

GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):446-53. doi: 10.1007/978-3-642-15745-5_55.

Abstract

Image focus quality is of utmost importance in digital microscopes because the pathologist cannot accurately characterize the tissue state without focused images. We propose to train a classifier to measure the focus quality of microscopy scans based on an extensive set of image features. However, classifiers rely heavily on the quality and quantity of the training data, and collecting annotated data is tedious and expensive. We therefore propose a new method to automatically generate large amounts of training data using image stacks. Our experiments demonstrate that a classifier trained with the image stacks performs comparably with one trained with manually annotated data. The classifier is able to accurately detect out-of-focus regions, provide focus quality feedback to the user, and identify potential problems of the microscopy design.

摘要

图像聚焦质量在数字显微镜中至关重要,因为病理学家在没有聚焦图像的情况下无法准确描述组织状态。我们建议训练一个分类器,基于大量图像特征来测量显微镜扫描的聚焦质量。然而,分类器严重依赖训练数据的质量和数量,而收集带注释的数据既繁琐又昂贵。因此,我们提出一种使用图像堆栈自动生成大量训练数据的新方法。我们的实验表明,用图像堆栈训练的分类器与用手动注释数据训练的分类器表现相当。该分类器能够准确检测失焦区域,向用户提供聚焦质量反馈,并识别显微镜设计中的潜在问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验