Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.
J Proteome Res. 2010 Dec 3;9(12):6354-67. doi: 10.1021/pr100648r. Epub 2010 Nov 12.
In recent years, electron transfer dissociation (ETD) has enjoyed widespread applications from sequencing of peptides with or without post-translational modifications to top-down analysis of intact proteins. However, peptide identification rates from ETD spectra compare poorly with those from collision induced dissociation (CID) spectra, especially for doubly charged precursors. This is in part due to an insufficient understanding of the characteristics of ETD and consequently a failure of database search engines to make use of the rich information contained in the ETD spectra. In this study, we statistically characterized ETD fragmentation patterns from a collection of 461 440 spectra and subsequently implemented our findings into pFind, a database search engine developed earlier for CID data. From ETD spectra of doubly charged precursors, pFind 2.1 identified 63-122% more unique peptides than Mascot 2.2 under the same 1% false discovery rate. For higher charged peptides as well as phosphopeptides, pFind 2.1 also consistently obtained more identifications. Of the features built into pFind 2.1, the following two greatly enhanced its performance: (1) refined automatic detection and removal of high-intensity peaks belonging to the precursor, charge-reduced precursor, or related neutral loss species, whose presence often set spectral matching askew; (2) a thorough consideration of hydrogen-rearranged fragment ions such as z + H and c - H for peptide precursors of different charge states. Our study has revealed that different charge states of precursors result in different hydrogen rearrangement patterns. For a fragment ion, its propensity of gaining or losing a hydrogen depends on (1) the ion type (c or z) and (2) the size of the fragment relative to the precursor, and both dependencies are affected by (3) the charge state of the precursor. In addition, we discovered ETD characteristics that are unique for certain types of amino acids (AAs), such as a prominent neutral loss of SCH(2)CONH(2) (90.0014 Da) from z ions with a carbamidomethylated cysteine at the N-terminus and a neutral loss of histidine side chain C(4)N(2)H(5) (81.0453 Da) from precursor ions containing histidine. The comprehensive list of ETD characteristics summarized in this paper should be valuable for automated database search, de novo peptide sequencing, and manual spectral validation.
近年来,电子转移解离(ETD)已广泛应用于翻译带有或不带有翻译后修饰的肽序列,以及对完整蛋白质的自上而下分析。然而,与碰撞诱导解离(CID)谱相比,从 ETD 谱中鉴定肽的效率较差,尤其是对于双电荷前体。这部分是由于对 ETD 特性的了解不足,因此数据库搜索引擎未能充分利用 ETD 谱中包含的丰富信息。在这项研究中,我们从 461,440 个谱中统计了 ETD 碎片模式,并将我们的发现应用于 pFind,这是一个早些时候为 CID 数据开发的数据库搜索引擎。从双电荷前体的 ETD 谱中,pFind 2.1 在相同的 1%假发现率下比 Mascot 2.2 鉴定出 63-122%的独特肽。对于更高电荷的肽和磷酸肽,pFind 2.1 也始终能获得更多的鉴定。在 pFind 2.1 中内置的功能中,以下两个功能大大提高了其性能:(1)改进了自动检测和去除属于前体、电荷减少前体或相关中性丢失物种的高强度峰的功能,这些峰的存在常常使光谱匹配产生偏差;(2)彻底考虑了不同电荷状态的肽前体的氢重排片段离子,如 z + H 和 c - H。我们的研究表明,前体的不同电荷状态会导致不同的氢重排模式。对于一个片段离子,其获得或失去一个氢的倾向取决于(1)离子类型(c 或 z)和(2)相对于前体的片段大小,这两个依赖性都受到(3)前体的电荷状态的影响。此外,我们发现了一些 ETD 特征,这些特征对某些类型的氨基酸(AA)是独特的,例如,带有 N-端碳氨甲基化半胱氨酸的 z 离子会明显失去 SCH(2)CONH(2)(90.0014 Da),而含有组氨酸的前体离子会失去组氨酸侧链 C(4)N(2)H(5)(81.0453 Da)。本文总结的 ETD 特征的综合清单对自动化数据库搜索、从头测序肽和手动光谱验证都应该是有价值的。