Suppr超能文献

水稻 BGlu1β-葡萄糖苷酶寡糖结合的结构基础。

The structural basis of oligosaccharide binding by rice BGlu1 beta-glucosidase.

机构信息

Schools of Biochemistry and Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.

出版信息

J Struct Biol. 2011 Jan;173(1):169-79. doi: 10.1016/j.jsb.2010.09.021. Epub 2010 Sep 25.

Abstract

Rice BGlu1 β-glucosidase is an oligosaccharide exoglucosidase that binds to six β-(1→4)-linked glucosyl residues in its active site cleft. Here, we demonstrate that a BGlu1 E176Q active site mutant can be effectively rescued by small nucleophiles, such as acetate, azide and ascorbate, for hydrolysis of aryl glycosides in a pH-independent manner above pH5, consistent with the role of E176 as the catalytic acid-base. Cellotriose, cellotetraose, cellopentaose, cellohexaose and laminaribiose are not hydrolyzed by the mutant and instead exhibit competitive inhibition. The structures of the BGlu1 E176Q, its complexes with cellotetraose, cellopentaose and laminaribiose, and its covalent intermediate with 2-deoxy-2-fluoroglucoside were determined at 1.65, 1.95, 1.80, 2.80, and 1.90Å resolution, respectively. The Q176Nε was found to hydrogen bond to the glycosidic oxygen of the scissile bond, thereby explaining its high activity. The enzyme interacts with cellooligosaccharides through direct hydrogen bonds to the nonreducing terminal glucosyl residue. However, interaction with the other glucosyl residues is predominantly mediated through water molecules, with the exception of a direct hydrogen bond from N245 to glucosyl residue 3, consistent with the apparent high binding energy at this residue. Hydrophobic interactions with the aromatic sidechain of W358 appear to orient glucosyl residues 2 and 3, while Y341 orients glucosyl residues 4 and 5. In contrast, laminaribiose has its second glucosyl residue positioned to allow direct hydrogen bonding between its O2 and Q176 Oε and O1 and N245. These are the first GH1 glycoside hydrolase family structures to show oligosaccharide binding in the hydrolytic configuration.

摘要

水稻 BGlu1β-葡萄糖苷酶是一种寡糖外切糖苷酶,在其活性位点裂缝中结合六个β-(1→4)-连接的葡萄糖基残基。在这里,我们证明 BGlu1E176Q 活性位点突变体可以被小分子亲核试剂(如乙酸盐、叠氮化物和抗坏血酸盐)有效拯救,用于在 pH5 以上的 pH 独立方式水解芳基糖苷,这与 E176 作为催化酸碱的作用一致。纤维三糖、纤维四糖、纤维五糖、纤维六糖和纤维七糖不会被突变体水解,而是表现出竞争性抑制。BGlu1E176Q 的结构、其与纤维四糖、纤维五糖和纤维七糖的复合物结构以及其与 2-脱氧-2-氟葡萄糖苷的共价中间体的结构分别在 1.65、1.95、1.80、2.80 和 1.90Å分辨率下确定。发现 Q176Nε 与糖苷键的糖苷氧形成氢键,从而解释了其高活性。酶通过与非还原末端葡萄糖基残基的直接氢键相互作用与纤维寡糖相互作用。然而,与其他葡萄糖基残基的相互作用主要通过水分子介导,除了来自 N245 的直接氢键与葡萄糖基残基 3 相互作用外,这与该残基处的明显高结合能一致。与 W358 芳香侧链的疏水相互作用似乎使葡萄糖基残基 2 和 3 定向,而 Y341 或使葡萄糖基残基 4 和 5 定向。相比之下,纤维七糖的第二个葡萄糖基残基定位允许其 O2 和 Q176Oε 以及 O1 和 N245 之间直接形成氢键。这些是第一个展示水解构象中寡糖结合的 GH1 糖苷水解酶家族结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验