Suppr超能文献

利用简单生化测量预测连续等温过程中生物催化剂的寿命产出

Utilizing Simple Biochemical Measurements to Predict Lifetime Output of Biocatalysts in Continuous Isothermal Processes.

作者信息

Rogers Thomas A, Bommarius Andreas S

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332-0363, USA.

出版信息

Chem Eng Sci. 2010 Mar 15;65(6):2118-2124. doi: 10.1016/j.ces.2009.12.005.

Abstract

The expected product yield of a biocatalyst during its useful lifetime is an important consideration when designing a continuous biocatalytic process. One important indicator of lifetime biocatalyst productivity is the dimensionless total turnover number (TTN). Here, a method is proposed for estimating the TTN of a given biocatalyst from readily-measured biochemical quantities, namely the specific activity and the deactivation half-life, measured under identical conditions. We demonstrate that this method may be applied to any enzyme whose thermal deactivation follows first-order kinetics, regardless of the number of unfolding intermediates, and that the TTN method circumvents the potential problems associated with measuring specific catalyst output when a portion of the enzyme is already unfolded. The TTN estimation was applied to several representative biocatalysts to demonstrate its applicability in identifying the most cost-effective catalyst from a pool of engineered mutants with similar activity and thermal stability.

摘要

在设计连续生物催化过程时,生物催化剂在其使用寿命期间的预期产物产率是一个重要的考虑因素。寿命期生物催化剂生产力的一个重要指标是无量纲的总周转数(TTN)。在此,提出了一种根据在相同条件下易于测量的生化量,即比活性和失活半衰期,来估算给定生物催化剂的TTN的方法。我们证明,该方法可应用于任何热失活遵循一级动力学的酶,无论其展开中间体的数量如何,并且TTN方法规避了在一部分酶已经展开时测量特定催化剂输出所带来的潜在问题。将TTN估算应用于几种代表性生物催化剂,以证明其在从一组具有相似活性和热稳定性的工程突变体中识别最具成本效益的催化剂方面的适用性。

相似文献

2
Long-Term Biocatalyst Performance: Mechanistic Prediction and Continuous Non-Isothermal Testing.
ChemSusChem. 2022 May 6;15(9):e202102701. doi: 10.1002/cssc.202102701. Epub 2022 Apr 20.
3
Accelerated biocatalyst stability testing for process optimization.
Biotechnol Prog. 2005 May-Jun;21(3):762-74. doi: 10.1021/bp049609k.
4
Chitosan-based CLEAs from Aspergillus niger type A feruloyl esterase: high-productivity biocatalyst for alkyl ferulate synthesis.
Appl Microbiol Biotechnol. 2020 Dec;104(23):10033-10045. doi: 10.1007/s00253-020-10907-2. Epub 2020 Oct 7.
5
Preparation of L-aspartic acid by means of immobilized Alcaligenes metalcaligenes cells.
Biotechnol Bioeng. 1986 Jul;28(7):1072-9. doi: 10.1002/bit.260280718.
7
Considerations when Measuring Biocatalyst Performance.
Molecules. 2019 Oct 3;24(19):3573. doi: 10.3390/molecules24193573.
8
Streptomyces griseus: A new biocatalyst with N-oxygenase activity.
J Biotechnol. 2021 Feb 10;327:36-42. doi: 10.1016/j.jbiotec.2020.12.008. Epub 2020 Dec 26.
10
Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts.
Biotechnol J. 2017 Aug;12(8). doi: 10.1002/biot.201600170. Epub 2017 Jul 18.

引用本文的文献

1
Directed Evolution of a Modular Polyketide Synthase Thioesterase for Generation of a Hybrid Macrocyclic Ring System.
ACS Catal. 2025 Feb 21;15(4):3405-3417. doi: 10.1021/acscatal.4c07922. Epub 2025 Feb 11.
2
Molecular Engineering L-Aspartate-Alpha-Decarboxylase to Enhance Catalytic Stability and Performance.
ChemistryOpen. 2025 Feb;14(2):e202400236. doi: 10.1002/open.202400236. Epub 2024 Oct 25.
3
Purification and characterization of a Rieske oxygenase and its NADH-regenerating partner proteins.
Methods Enzymol. 2024;703:215-242. doi: 10.1016/bs.mie.2024.05.015. Epub 2024 Jun 18.
4
Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases.
Angew Chem Weinheim Bergstr Ger. 2021 Jun 14;133(25):13943-13947. doi: 10.1002/ange.202101186. Epub 2021 May 11.
5
Improvement of α-amino Ester Hydrolase Stability via Computational Protein Design.
Protein J. 2023 Dec;42(6):675-684. doi: 10.1007/s10930-023-10155-z. Epub 2023 Oct 11.
7
Mutations Increasing Cofactor Affinity, Improve Stability and Activity of a Baeyer-Villiger Monooxygenase.
ACS Catal. 2022 Oct 7;12(19):11761-11766. doi: 10.1021/acscatal.2c03225. Epub 2022 Sep 13.
8
Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2121426119. doi: 10.1073/pnas.2121426119. Epub 2022 Mar 21.
9
An Engineered Cytidine Deaminase for Biocatalytic Production of a Key Intermediate of the Covid-19 Antiviral Molnupiravir.
J Am Chem Soc. 2022 Mar 9;144(9):3761-3765. doi: 10.1021/jacs.1c11048. Epub 2022 Feb 28.
10
The Moderately (D)efficient Enzyme: Catalysis-Related Damage and Its Repair.
Biochemistry. 2021 Nov 30;60(47):3555-3565. doi: 10.1021/acs.biochem.1c00613. Epub 2021 Nov 3.

本文引用的文献

2
Engineering enzymes by 'intelligent' design.
Curr Opin Chem Biol. 2009 Feb;13(1):1-2. doi: 10.1016/j.cbpa.2009.02.022. Epub 2009 Mar 9.
3
Biocatalysis: towards ever greener biodiesel production.
Biotechnol Adv. 2009 Jul-Aug;27(4):398-408. doi: 10.1016/j.biotechadv.2008.10.008. Epub 2009 Mar 4.
4
Catalytic effectiveness, a measure of enzyme proficiency for industrial applications.
Trends Biotechnol. 2009 Mar;27(3):137-40. doi: 10.1016/j.tibtech.2008.12.001. Epub 2009 Feb 3.
6
Chemical versus biochemical conversion: when and how to use biocatalysts.
Biotechnol Bioeng. 1996 Oct 20;52(2):290-5. doi: 10.1002/(SICI)1097-0290(19961020)52:2<290::AID-BIT8>3.0.CO;2-L.
7
On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes.
Biotechnol Bioeng. 1983 Sep;25(9):2221-30. doi: 10.1002/bit.260250908.
8
Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept.
Chembiochem. 2007 Dec 17;8(18):2295-301. doi: 10.1002/cbic.200700500.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验