Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, The Netherlands.
Int J Radiat Oncol Biol Phys. 2011 Nov 15;81(4):950-7. doi: 10.1016/j.ijrobp.2010.07.009. Epub 2010 Oct 6.
To validate and clinically evaluate autocontouring using atlas-based autosegmentation (ABAS) of computed tomography images.
The data from 10 head-and-neck patients were selected as input for ABAS, and neck levels I-V and 20 organs at risk were manually contoured according to published guidelines. The total contouring times were recorded. Two different ABAS strategies, multiple and single subject, were evaluated, and the similarity of the autocontours with the atlas contours was assessed using Dice coefficients and the mean distances, using the leave-one-out method. For 12 clinically treated patients, 5 experienced observers edited the autosegmented contours. The editing times were recorded. The Dice coefficients and mean distances were calculated among the clinically used contours, autocontours, and edited autocontours. Finally, an expert panel scored all autocontours and the edited autocontours regarding their adequacy relative to the published atlas.
The time to autosegment all the structures using ABAS was 7 min/patient. No significant differences were observed in the autosegmentation accuracy for stage N0 and N+ patients. The multisubject atlas performed best, with a Dice coefficient and mean distance of 0.74 and 2 mm, 0.67 and 3 mm, 0.71 and 2 mm, 0.50 and 2 mm, and 0.78 and 2 mm for the salivary glands, neck levels, chewing muscles, swallowing muscles, and spinal cord-brainstem, respectively. The mean Dice coefficient and mean distance of the autocontours vs. the clinical contours was 0.8 and 2.4 mm for the neck levels and salivary glands, respectively. For the autocontours vs. the edited autocontours, the mean Dice coefficient and mean distance was 0.9 and 1.6 mm, respectively. The expert panel scored 100% of the autocontours as a "minor deviation, editable" or better. The expert panel scored 88% of the edited contours as good compared with 83% of the clinical contours. The total editing time was 66 min.
Multiple-subject ABAS of computed tomography images proved to be a useful novel tool in the rapid delineation of target and normal tissues. Although editing of the autocontours is inevitable, a substantial time reduction was achieved using editing, instead of manual contouring (180 vs. 66 min).
验证并临床评估基于图谱的自动分割(ABAS)在 CT 图像上的自动勾画效果。
选择 10 例头颈部患者的数据作为 ABAS 的输入,并根据已发表的指南手动勾画颈部水平 I-V 和 20 个危及器官。记录总的勾画时间。评估了两种不同的 ABAS 策略,即多例患者和单例患者,并使用留一法评估自动勾画轮廓与图谱轮廓的相似性,使用 Dice 系数和平均距离进行评估。对于 12 例接受临床治疗的患者,5 名经验丰富的观察者编辑了自动分割的轮廓。记录编辑时间。计算临床使用的轮廓、自动勾画轮廓和编辑后的自动勾画轮廓之间的 Dice 系数和平均距离。最后,一个专家小组根据与已发表图谱的相关性,对所有自动勾画轮廓和编辑后的自动勾画轮廓进行了充分性评分。
使用 ABAS 对所有结构进行自动分割的时间为每位患者 7 分钟。N0 期和 N+期患者的自动分割准确性无显著差异。多例患者图谱的表现最佳,唾液腺、颈部水平、咀嚼肌、吞咽肌和脊髓-脑干的 Dice 系数和平均距离分别为 0.74 和 2mm、0.67 和 3mm、0.71 和 2mm、0.50 和 2mm、0.78 和 2mm。自动勾画轮廓与临床轮廓相比,颈部水平和唾液腺的平均 Dice 系数和平均距离分别为 0.8 和 2.4mm。自动勾画轮廓与编辑后的自动勾画轮廓相比,平均 Dice 系数和平均距离分别为 0.9 和 1.6mm。专家小组将 100%的自动勾画轮廓评为“轻微偏差,可编辑”或更好。与 83%的临床轮廓相比,专家小组将 88%的编辑轮廓评为良好。总的编辑时间为 66 分钟。
CT 图像的多例患者 ABAS 被证明是一种快速勾画靶区和正常组织的有用新工具。虽然自动勾画轮廓的编辑是不可避免的,但使用编辑可以大大减少时间,而不是手动勾画(180 分钟对 66 分钟)。