Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany.
Mol Biotechnol. 2011 Mar;47(3):262-9. doi: 10.1007/s12033-010-9340-z.
Lentiviral gene transfer vectors are suitable for genetically modifying non-cycling primary human cells. In this study, we analyzed transduced human dendritic cells (DC) generated by the use of three different GFP-encoding lentiviral vectors, HIV-2 ROD A Δenv-GFP (ROD A), SIVsmm PBj ΔE EGFP (PBj), and SIVmac ΔE EGFP (SIVmac). CD14+ monocytes were isolated from buffy coat, transduced, and differentiated to immature and mature DC. Cytofluometric analysis of DC revealed high transduction efficiencies at MOI 1 for simian immunodeficiency virus (SIV)-derived vectors PBj and SIVmac ranging between 80-90 and 70-90%, respectively. In contrast, transduction with ROD A resulted only in approximately 30%-positive DC at the same MOI. Of note, none of the analyzed vectors affected expression of maturation and/or activation markers. Moreover, transduction with PBj or SIVmac did not induce significant cytokine responses whereas ROD A transduction stimulated weak interferon-alpha responses. SIVmac transduced DC showed normal phagocytosis of antigen and normal allo T cell stimulatory capacity when compared with untreated DC. Thus, the SIVmac lentiviral transduction vector is suitable for efficient genetic modification of human DC without affecting phenotype or function and thus qualifies this vector as a versatile tool for use in basic research.
慢病毒基因转移载体适合遗传修饰非循环的原代人细胞。在这项研究中,我们分析了三种不同 GFP 编码慢病毒载体转导的人树突状细胞(DC),分别为 HIV-2 ROD A Δenv-GFP(ROD A)、SIVsmm PBj ΔE EGFP(PBj)和 SIVmac ΔE EGFP(SIVmac)。我们从白细胞中分离出 CD14+单核细胞,进行转导,然后分化为未成熟和成熟的 DC。通过细胞荧光分析发现,对于来源于猿猴免疫缺陷病毒(SIV)的 PBj 和 SIVmac 载体,MOI 为 1 时,转导效率较高,分别为 80-90%和 70-90%。相比之下,用 ROD A 进行转导时,只有大约 30%的 DC 呈阳性。值得注意的是,分析的载体均不会影响成熟和/或激活标志物的表达。此外,PBj 或 SIVmac 转导不会引起明显的细胞因子反应,而 ROD A 转导会刺激较弱的干扰素-α反应。与未经处理的 DC 相比,SIVmac 转导的 DC 显示出正常的抗原吞噬作用和正常的同种异体 T 细胞刺激能力。因此,SIVmac 慢病毒转导载体适合高效遗传修饰人 DC,而不影响表型或功能,因此该载体可作为基础研究中通用的工具。