Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan.
J Am Chem Soc. 2010 Nov 3;132(43):15286-98. doi: 10.1021/ja1063444.
We synthesized and investigated a new series of metal-hydrazone complexes, including deprotonated [MX(mtbhp)] and protonated forms MX(Hmtbhp) (M = Pd(2+), Pt(2+); X = Cl(-), Br(-); Hmtbhp = 2-(2-(2-(methylthio)benzylidene)hydrazinyl)pyridine) and hydrogen-bonded proton-transfer (HBPT) assemblies containing [PdBr(mtbhp)] and bromanilic acid (H(2)BA). The mtbhp hydrazone ligand acts as a tridentate SNN ligand and provides a high proton affinity. UV-vis spectroscopy revealed that these metal-hydrazone complexes follow a reversible protonation-deprotonation reaction ([MX(mtbhp)] + H(+) ⇋ MX(Hmtbhp)), resulting in a remarkable color change from red to yellow. Reactions between proton acceptor [PdBr(mtbhp)] (A) and proton donor H(2)BA (D) afforded four types of HBPT assemblies with different D/A ratios: for D/A = 1:1, {PdBr(Hmtbhp)·Acetone} and {PdBr(Hmtbhp)·2(1,4-dioxane)}; for D/A = 1:2, PdBr(Hmtbhp)(BA); and for D/A = 3:2, {PdBr(Hmtbhp)(HBA)(2)(H(2)BA)·2Acetonitrile}. The proton donor gave at least one proton to the acceptor to form the hydrogen bonded A···D pair of PdBr(Hmtbhp)···HBA(-). The strength of the hydrogen bond in the pair depends on the kind of molecule bound to the free monoanionic bromanilate OH group. Low-temperature IR spectra (T < 150 K) showed that the hydrogen bond distance between PdBr(Hmtbhp) and bromanilate was short enough (ca. 2.58 Å) to induce proton migration in the PdBr(Hmtbhp)(BA) assembly in the solid state. The hydrogen bonds formed not only between PdBr(Hmtbhp) and HBA(-) but also between HBA(-) and neutral H(2)BA molecules in the {PdBr(Hmtbhp)(HBA)(2)(H(2)BA)·2Acetonitrile} assembly. The H(2)BA-based flexible hydrogen bond network and strong acidic host structure result in an interesting vapor adsorption ability and vapochromic behavior in this assembly because the vapor-induced rearrangement of the hydrogen bond network, accompanied by changes in π-π stacking interactions, provides a recognition ability of proton donating and accepting properties of the vapor molecule.
我们合成并研究了一系列新的金属腙配合物,包括去质子化的[MX(mtbhp)]和质子化形式[MX(Hmtbhp)](ClO(4))(M=Pd(2+),Pt(2+);X=Cl(-),Br(-);Hmtbhp=2-(2-(2-(甲基硫代)苄叉基)肼基)吡啶)和含有[PdBr(mtbhp)]和邻氨基苯甲酸(H(2)BA)的氢键质子转移(HBPT)组装体。mtbhp 腙配体作为一个三齿 SNN 配体,提供了很高的质子亲和力。紫外可见光谱表明,这些金属腙配合物遵循可逆的质子化-去质子化反应([MX(mtbhp)]+H(+)⇋[MX(Hmtbhp)] (+)),导致颜色从红色显著变为黄色。质子受体PdBr(mtbhp)与质子供体 H(2)BA(D)之间的反应以不同的 D/A 比提供了四种 HBPT 组装体:对于 D/A=1:1,{PdBr(Hmtbhp)·Acetone}和{PdBr(Hmtbhp)·2(1,4-二恶烷)};对于 D/A=1:2,PdBr(Hmtbhp)(BA);对于 D/A=3:2,{PdBr(Hmtbhp)(HBA)(2)(H(2)BA)·2Acetonitrile}。质子供体至少向受体提供一个质子,形成质子键合的 A···D 对PdBr(Hmtbhp)···HBA(-)。氢键对的强度取决于与游离单阴离子邻氨基苯甲酸 OH 基团结合的分子种类。低温红外光谱(T<150 K)表明,PdBr(Hmtbhp)和邻氨基苯甲酸之间的氢键距离足够短(约 2.58 Å),足以在固态中诱导PdBr(Hmtbhp)(BA)组装体中的质子迁移。氢键不仅形成于PdBr(Hmtbhp)和 HBA(-)之间,也形成于{HBA(-)和中性 H(2)BA}分子之间,形成了{HBA(-)和中性 H(2)BA}分子之间的氢键网络。基于 H(2)BA 的柔性氢键网络和强酸性主体结构导致了该组装体中有趣的蒸气吸附能力和蒸气变色行为,因为氢键网络的蒸气诱导重排伴随着π-π堆积相互作用的变化,提供了对蒸气分子供质子和接受质子性质的识别能力。