Suppr超能文献

RNA结构和核糖核蛋白组装的高通量SHAPE及羟基自由基分析

High-throughput SHAPE and hydroxyl radical analysis of RNA structure and ribonucleoprotein assembly.

作者信息

McGinnis Jennifer L, Duncan Caia D S, Weeks Kevin M

机构信息

Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA.

出版信息

Methods Enzymol. 2009;468:67-89. doi: 10.1016/S0076-6879(09)68004-6.

Abstract

RNA folds to form complex structures vital to many cellular functions. Proteins facilitate RNA folding at both the secondary and tertiary structure levels. An absolute prerequisite for understanding RNA folding and ribonucleoprotein (RNP) assembly reactions is a complete understanding of the RNA structure at each stage of the folding or assembly process. Here we provide a guide for comprehensive and high-throughput analysis of RNA secondary and tertiary structure using SHAPE and hydroxyl radical footprinting. As an example of the strong and sometimes surprising conclusions that can emerge from high-throughput analysis of RNA folding and RNP assembly, we summarize the structure of the bI3 group I intron RNA in four distinct states. Dramatic structural rearrangements occur in both secondary and tertiary structure as the RNA folds from the free state to the active, six-component, RNP complex. As high-throughput and high-resolution approaches are applied broadly to large protein-RNA complexes, other proteins previously viewed as making simple contributions to RNA folding are also likely to be found to exert multifaceted, long-range, cooperative, and nonadditive effects on RNA folding. These protein-induced contributions add another level of control, and potential regulatory function, in RNP complexes.

摘要

RNA折叠形成对许多细胞功能至关重要的复杂结构。蛋白质在二级和三级结构水平上促进RNA折叠。理解RNA折叠和核糖核蛋白(RNP)组装反应的一个绝对前提是全面了解折叠或组装过程每个阶段的RNA结构。在此,我们提供了一份使用SHAPE和羟基自由基足迹法对RNA二级和三级结构进行全面且高通量分析的指南。作为RNA折叠和RNP组装高通量分析可能得出的有力且有时令人惊讶的结论的一个例子,我们总结了处于四种不同状态的bI3组I内含子RNA的结构。当RNA从自由状态折叠成活性的六组分RNP复合物时,二级和三级结构都会发生显著的结构重排。随着高通量和高分辨率方法广泛应用于大型蛋白质-RNA复合物,之前被认为对RNA折叠仅起简单作用的其他蛋白质,也可能被发现对RNA折叠发挥多方面、远距离、协同和非加性的作用。这些蛋白质诱导的作用在RNP复合物中增加了另一层控制以及潜在的调节功能。

相似文献

1
High-throughput SHAPE and hydroxyl radical analysis of RNA structure and ribonucleoprotein assembly.
Methods Enzymol. 2009;468:67-89. doi: 10.1016/S0076-6879(09)68004-6.
4
RNA folding pathways and the self-assembly of ribosomes.
Acc Chem Res. 2011 Dec 20;44(12):1312-9. doi: 10.1021/ar2000474. Epub 2011 Jun 29.
6
Protein-dependent transition states for ribonucleoprotein assembly.
J Mol Biol. 2001 Jun 22;309(5):1087-100. doi: 10.1006/jmbi.2001.4714.
7
Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays.
Curr Protoc Nucleic Acid Chem. 2018 Jun;73(1):e52. doi: 10.1002/cpnc.52. Epub 2018 Jun 7.
8
A threefold RNA-protein interface in the signal recognition particle gates native complex assembly.
J Mol Biol. 2007 Jun 1;369(2):512-24. doi: 10.1016/j.jmb.2007.03.032. Epub 2007 Mar 20.
9
Exploring RNA structural codes with SHAPE chemistry.
Acc Chem Res. 2011 Dec 20;44(12):1280-91. doi: 10.1021/ar200051h. Epub 2011 May 26.
10
Probing RNA structures with hydroxyl radicals.
Curr Protoc Nucleic Acid Chem. 2001 May;Chapter 6:Unit 6.5. doi: 10.1002/0471142700.nc0605s00.

引用本文的文献

1
MMTV RNA packaging requires an extended long-range interaction for productive Gag binding to packaging signals.
PLoS Biol. 2024 Oct 3;22(10):e3002827. doi: 10.1371/journal.pbio.3002827. eCollection 2024 Oct.
4
SHAPE to Probe RNA Structure and RNA-Protein Interactions In Vitro.
Methods Mol Biol. 2023;2666:69-80. doi: 10.1007/978-1-0716-3191-1_5.
5
Footprinting SHAPE-eCLIP Reveals Transcriptome-wide Hydrogen Bonds at RNA-Protein Interfaces.
Mol Cell. 2020 Dec 3;80(5):903-914.e8. doi: 10.1016/j.molcel.2020.11.014. Epub 2020 Nov 25.
8
Structural disruption of exonic stem-loops immediately upstream of the intron regulates mammalian splicing.
Nucleic Acids Res. 2020 Jun 19;48(11):6294-6309. doi: 10.1093/nar/gkaa358.
9
Transcriptional and translational S-box riboswitches differ in ligand-binding properties.
J Biol Chem. 2020 May 15;295(20):6849-6860. doi: 10.1074/jbc.RA120.012853. Epub 2020 Mar 24.
10
Determinants of target prioritization and regulatory hierarchy for the bacterial small RNA SgrS.
Mol Microbiol. 2019 Oct;112(4):1199-1218. doi: 10.1111/mmi.14355. Epub 2019 Aug 6.

本文引用的文献

1
The Mrs1 splicing factor binds the bI3 group I intron at each of two tetraloop-receptor motifs.
PLoS One. 2010 Feb 1;5(2):e8983. doi: 10.1371/journal.pone.0008983.
2
Accurate SHAPE-directed RNA structure determination.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):97-102. doi: 10.1073/pnas.0806929106. Epub 2008 Dec 24.
4
Strong correlation between SHAPE chemistry and the generalized NMR order parameter (S2) in RNA.
J Am Chem Soc. 2008 Sep 17;130(37):12244-5. doi: 10.1021/ja804541s. Epub 2008 Aug 19.
5
Catalytic strategies of self-cleaving ribozymes.
Acc Chem Res. 2008 Aug;41(8):1027-35. doi: 10.1021/ar800050c. Epub 2008 Jul 25.
8
RNA chaperones, RNA annealers and RNA helicases.
RNA Biol. 2007 Nov;4(3):118-30. doi: 10.4161/rna.4.3.5445.
9
Complex ligand-induced conformational changes in tRNA(Asp) revealed by single-nucleotide resolution SHAPE chemistry.
Biochemistry. 2008 Mar 18;47(11):3454-61. doi: 10.1021/bi702372x. Epub 2008 Feb 22.
10
Tertiary interactions determine the accuracy of RNA folding.
J Am Chem Soc. 2008 Jan 30;130(4):1296-303. doi: 10.1021/ja076166i. Epub 2008 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验