School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
IEEE Trans Med Imaging. 2011 Feb;30(2):484-96. doi: 10.1109/TMI.2010.2087390. Epub 2010 Oct 14.
Optical coherence tomography (OCT) is a noninvasive, depth-resolved imaging modality that has become a prominent ophthalmic diagnostic technique. We present a semi-automated segmentation algorithm to detect intra-retinal layers in OCT images acquired from rodent models of retinal degeneration. We adapt Chan-Vese's energy-minimizing active contours without edges for the OCT images, which suffer from low contrast and are highly corrupted by noise. A multiphase framework with a circular shape prior is adopted in order to model the boundaries of retinal layers and estimate the shape parameters using least squares. We use a contextual scheme to balance the weight of different terms in the energy functional. The results from various synthetic experiments and segmentation results on OCT images of rats are presented, demonstrating the strength of our method to detect the desired retinal layers with sufficient accuracy even in the presence of intensity inhomogeneity resulting from blood vessels. Our algorithm achieved an average Dice similarity coefficient of 0.84 over all segmented retinal layers, and of 0.94 for the combined nerve fiber layer, ganglion cell layer, and inner plexiform layer which are the critical layers for glaucomatous degeneration.
光学相干断层扫描(OCT)是一种非侵入性、深度分辨的成像方式,已成为眼科诊断的重要技术。我们提出了一种用于从视网膜变性的啮齿动物模型中获取的 OCT 图像中检测视网膜内各层的半自动分割算法。我们对 Chan-Vese 的能量最小化无边缘活动轮廓进行了调整,以适应对比度低且高度受噪声干扰的 OCT 图像。采用具有圆形先验的多相框架来模拟视网膜层的边界,并使用最小二乘法估计形状参数。我们使用上下文方案来平衡能量函数中不同项的权重。结果来自各种合成实验和大鼠 OCT 图像的分割结果,表明即使在血管导致的强度不均匀的情况下,我们的方法也能够非常准确地检测到所需的视网膜层。我们的算法在所有分割的视网膜层上的平均骰子相似系数为 0.84,在神经纤维层、节细胞层和内丛状层(青光眼变性的关键层)的综合平均骰子相似系数为 0.94。