Suppr超能文献

BRCA 阴性女性乳腺癌风险的基因组分析的判别准确性和潜在临床效用。

Discriminatory accuracy and potential clinical utility of genomic profiling for breast cancer risk in BRCA-negative women.

机构信息

Clinical Genetics and Breast Cancer Medicine Services, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA.

出版信息

Breast Cancer Res Treat. 2011 Jun;127(2):479-87. doi: 10.1007/s10549-010-1215-2. Epub 2010 Oct 19.

Abstract

Several single nucleotide polymorphisms (SNPs) are associated with an increased risk of breast cancer. The clinical utility of genotyping individuals at these loci is not known. Subjects were 519 unaffected women without BRCA mutations. Gail, Claus, and IBIS models were used to estimate absolute breast cancer risks. Subjects were then genotyped at 15 independent risk loci. Published per-allele and genotype-specific odds ratios were used to calculate the composite cumulative genomic risk (CGR) for each subject. Affected age- and ethnicity-matched BRCA mutation-negative women were also genotyped as a comparison group for the calculation of discriminatory accuracy. The CGR was used to adjust absolute breast cancer risks calculated by Gail, Claus and IBIS models to determine the proportion of subjects whose recommendations for chemoprevention or MRI screening might be altered (reclassified) by such adjustment. Mean lifetime breast cancer risks calculated using the Gail, Claus, and IBIS models were 19.4, 13.0, and 17.7%, respectively. CGR did not correlate with breast cancer risk as calculated using any model. CGR was significantly higher in affected women (mean 3.35 vs. 3.12, P = 0.009). The discriminatory accuracy of the CGR alone was 0.55 (SE 0.019; P = 0.006). CGR adjustment of model-derived absolute risk estimates would have altered clinical recommendations for chemoprevention in 11-19% of subjects and for MRI screening in 8-32%. CGR has limited discriminatory accuracy. However, the use of a genomic risk term to adjust model-derived estimates has the potential to alter individual recommendations. These observations warrant investigation to evaluate the calibration of adjusted risk estimates.

摘要

几个单核苷酸多态性(SNPs)与乳腺癌风险增加相关。这些位点个体基因分型的临床实用性尚不清楚。研究对象为 519 名无 BRCA 突变的未受影响女性。使用 Gail、Claus 和 IBIS 模型来估计绝对乳腺癌风险。然后,对 15 个独立的风险位点进行基因分型。使用已发表的每个等位基因和基因型特异性优势比来计算每个受试者的综合累积基因组风险(CGR)。还对受影响的年龄和种族匹配的 BRCA 突变阴性女性进行基因分型,作为计算判别准确性的比较组。使用 CGR 调整 Gail、Claus 和 IBIS 模型计算的绝对乳腺癌风险,以确定推荐化学预防或 MRI 筛查的受试者比例(重新分类)可能会因这种调整而改变。使用 Gail、Claus 和 IBIS 模型计算的终生乳腺癌风险平均值分别为 19.4%、13.0%和 17.7%。CGR 与任何模型计算的乳腺癌风险均不相关。受影响的女性 CGR 明显更高(平均值 3.35 比 3.12,P = 0.009)。CGR 的单独判别准确性为 0.55(SE 0.019;P = 0.006)。CGR 对模型衍生的绝对风险估计的调整将改变 11-19%的受试者对化学预防和 8-32%的受试者对 MRI 筛查的临床建议。CGR 的判别准确性有限。然而,使用基因组风险术语来调整模型衍生的估计值有可能改变个体建议。这些观察结果值得进一步调查,以评估调整风险估计的校准。

相似文献

1
Discriminatory accuracy and potential clinical utility of genomic profiling for breast cancer risk in BRCA-negative women.
Breast Cancer Res Treat. 2011 Jun;127(2):479-87. doi: 10.1007/s10549-010-1215-2. Epub 2010 Oct 19.
2
Accuracy of Risk Prediction Models for Breast Cancer and Mutation Carrier Probabilities in Israel.
Anticancer Res. 2018 Aug;38(8):4557-4563. doi: 10.21873/anticanres.12760.
3
Practical problems with clinical guidelines for breast cancer prevention based on remaining lifetime risk.
J Natl Cancer Inst. 2015 May 8;107(7). doi: 10.1093/jnci/djv124. Print 2015 Jul.
5
Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk.
PLoS Genet. 2013;9(3):e1003173. doi: 10.1371/journal.pgen.1003173. Epub 2013 Mar 27.
7
The impact of a panel of 18 SNPs on breast cancer risk in women attending a UK familial screening clinic: a case-control study.
J Med Genet. 2017 Feb;54(2):111-113. doi: 10.1136/jmedgenet-2016-104125. Epub 2016 Oct 28.
9
Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers.
Hum Mol Genet. 2009 Nov 15;18(22):4442-56. doi: 10.1093/hmg/ddp372. Epub 2009 Aug 5.
10
Computerized analysis of digitized mammograms of BRCA1 and BRCA2 gene mutation carriers.
Radiology. 2002 Nov;225(2):519-26. doi: 10.1148/radiol.2252010845.

引用本文的文献

1
Genetic Testing to Guide Risk-Stratified Screens for Breast Cancer.
J Pers Med. 2019 Mar 1;9(1):15. doi: 10.3390/jpm9010015.
2
Validation of a genetic risk score for Arkansas women of color.
PLoS One. 2018 Oct 3;13(10):e0204834. doi: 10.1371/journal.pone.0204834. eCollection 2018.
3
Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry.
Cancer Epidemiol Biomarkers Prev. 2016 Feb;25(2):359-65. doi: 10.1158/1055-9965.EPI-15-0838. Epub 2015 Dec 16.
4
SNPs and breast cancer risk prediction for African American and Hispanic women.
Breast Cancer Res Treat. 2015 Dec;154(3):583-9. doi: 10.1007/s10549-015-3641-7. Epub 2015 Nov 20.
5
Risk determination and prevention of breast cancer.
Breast Cancer Res. 2014 Sep 28;16(5):446. doi: 10.1186/s13058-014-0446-2.
6
Cancer genomics and inherited risk.
J Clin Oncol. 2014 Mar 1;32(7):687-98. doi: 10.1200/JCO.2013.49.7271. Epub 2014 Jan 21.
7
Bringing genome-wide association findings into clinical use.
Nat Rev Genet. 2013 Aug;14(8):549-58. doi: 10.1038/nrg3523. Epub 2013 Jul 9.
8
Using SNP genotypes to improve the discrimination of a simple breast cancer risk prediction model.
Breast Cancer Res Treat. 2013 Jun;139(3):887-96. doi: 10.1007/s10549-013-2610-2. Epub 2013 Jun 18.

本文引用的文献

1
Performance of common genetic variants in breast-cancer risk models.
N Engl J Med. 2010 Mar 18;362(11):986-93. doi: 10.1056/NEJMoa0907727.
2
Assessing the performance of prediction models: a framework for traditional and novel measures.
Epidemiology. 2010 Jan;21(1):128-38. doi: 10.1097/EDE.0b013e3181c30fb2.
3
The 6q22.33 locus and breast cancer susceptibility.
Cancer Epidemiol Biomarkers Prev. 2009 Sep;18(9):2468-75. doi: 10.1158/1055-9965.EPI-09-0151. Epub 2009 Aug 18.
5
Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042.
J Natl Cancer Inst. 2009 Jul 15;101(14):1012-8. doi: 10.1093/jnci/djp167. Epub 2009 Jun 30.
6
Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model.
J Natl Cancer Inst. 2009 Jul 1;101(13):959-63. doi: 10.1093/jnci/djp130. Epub 2009 Jun 17.
8
Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2.
Nat Genet. 2009 May;41(5):585-90. doi: 10.1038/ng.354. Epub 2009 Mar 29.
9
Beyond odds ratios--communicating disease risk based on genetic profiles.
Nat Rev Genet. 2009 Apr;10(4):264-9. doi: 10.1038/nrg2516.
10
SNP genotyping using the Sequenom MassARRAY iPLEX platform.
Curr Protoc Hum Genet. 2009 Jan;Chapter 2:Unit 2.12. doi: 10.1002/0471142905.hg0212s60.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验