Suppr超能文献

KRASG12D 驱动的胰腺癌小鼠模型中易感基因座的鉴定。

Identification of susceptibility loci in a mouse model of KRASG12D-driven pancreatic cancer.

机构信息

McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.

出版信息

Cancer Res. 2010 Nov 1;70(21):8398-406. doi: 10.1158/0008-5472.CAN-09-3980. Epub 2010 Oct 19.

Abstract

Genetic background affects susceptibility to pancreatic ductal adenocarcinoma in the Ela-KRAS(G12D) mouse model. In this model, KRAS oncogene expression is driven by an elastase promoter in acinar cells of the pancreas on an FVB/NTac (FVB) background [FVB-Tg(Ela-KRAS(G12D))] with the transgene carried on the Y chromosome. Through linkage analysis of crosses between the C57BL/6J (B6), BALB/cJ (BALB), and DBA/2J (D2) inbred strains of mice and resistant FVB-Tg(Ela-KRAS(G12D)), we have identified six susceptibility loci that affect mean preinvasive lesion multiplicity. Markers on chromosome 2 segregated with high tumor multiplicity in all three strains; these loci were designated Prsq1-3 (pancreatic ras susceptibility quantitative trait loci 1-3; combined F2 and N2 LOD(W), 6.0, 4.1, and 2.7, respectively). Susceptibility loci on chromosome 4, designated Prsq4 and Prsq5, were identified in crosses between FVB transgenic mice and B6 or BALB mice (combined F2 and N2 LOD(W), 3.6 and 2.9, respectively). A marker on chromosome 12 segregated with tumor multiplicity in a BALB × FVB-Tg(Ela-KRAS(G12D)) cross and was designated Prsq6 (LOD(W), ∼2.5). B6-Chr Y(FVB-Tg(Ela-KRASG12D)) and BALB-Chr Y(FVB-Tg(Ela-KRASG12D)) consomics, which carry the KRAS transgene on the FVB Y chromosome on an otherwise inbred B6 or BALB background, developed ∼4-fold (B6) and ∼10-fold (BALB) more lesions than FVB-Tg(Ela-KRAS(G12D)) mice. By 12 months of age, 10% of BALB-Chr Y(FVB-Tg(Ela-KRASG12D)) mice developed invasive carcinomas. Our findings provide evidence that regions of chromosomes 2, 4, and 12 influence the development and progression of pancreatic neoplasms initiated by an oncogenic allele of KRAS in mice.

摘要

遗传背景会影响胰腺导管腺癌在 Ela-KRAS(G12D) 小鼠模型中的易感性。在这个模型中,KRAS 癌基因表达是由胰腺腺泡细胞中的弹性蛋白酶启动子驱动的,该启动子在 FVB/NTac(FVB)背景[FVB-Tg(Ela-KRAS(G12D))]上,转基因位于 Y 染色体上。通过对 C57BL/6J (B6)、BALB/cJ (BALB) 和 DBA/2J (D2) 近交系小鼠与抗性 FVB-Tg(Ela-KRAS(G12D)) 的杂交进行连锁分析,我们已经确定了六个影响前侵润病变多发性的易感性位点。位于染色体 2 上的标记物在所有三种菌株中都与高肿瘤多发性相关;这些位点被命名为 Prsq1-3(胰腺 ras 易感性定量性状位点 1-3;综合 F2 和 N2 LOD(W),分别为 6.0、4.1 和 2.7)。在 FVB 转基因小鼠与 B6 或 BALB 小鼠的杂交中,发现了位于染色体 4 上的易感性位点,分别命名为 Prsq4 和 Prsq5(综合 F2 和 N2 LOD(W),分别为 3.6 和 2.9)。在 BALB×FVB-Tg(Ela-KRAS(G12D))杂交中,位于染色体 12 上的标记物与肿瘤多发性相关,被命名为 Prsq6(LOD(W),约为 2.5)。B6-Chr Y(FVB-Tg(Ela-KRASG12D))和 BALB-Chr Y(FVB-Tg(Ela-KRASG12D))同基因系,在 B6 或 BALB 背景下,FVB 染色体上的 KRAS 转基因,其肿瘤病变比 FVB-Tg(Ela-KRAS(G12D))小鼠多约 4 倍(B6)和 10 倍(BALB)。在 12 个月大时,10%的 BALB-Chr Y(FVB-Tg(Ela-KRASG12D))小鼠发展为浸润性癌。我们的研究结果提供了证据,证明染色体 2、4 和 12 上的区域影响了由 KRAS 致癌等位基因在小鼠中引发的胰腺肿瘤的发生和进展。

相似文献

1
Identification of susceptibility loci in a mouse model of KRASG12D-driven pancreatic cancer.
Cancer Res. 2010 Nov 1;70(21):8398-406. doi: 10.1158/0008-5472.CAN-09-3980. Epub 2010 Oct 19.
2
Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
Gastroenterology. 2014 Nov;147(5):1119-33.e4. doi: 10.1053/j.gastro.2014.08.002. Epub 2014 Aug 12.
5
A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.
Gastroenterology. 2013 Dec;145(6):1449-58. doi: 10.1053/j.gastro.2013.08.018. Epub 2013 Aug 16.
7
A genetically engineered mouse model developing rapid progressive pancreatic ductal adenocarcinoma.
J Pathol. 2014 Oct;234(2):228-38. doi: 10.1002/path.4402. Epub 2014 Aug 4.
9
Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells.
Oncogene. 2016 Jul 21;35(29):3880-6. doi: 10.1038/onc.2015.437. Epub 2015 Nov 23.
10
Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice.
Gastroenterology. 2018 Apr;154(5):1509-1523.e5. doi: 10.1053/j.gastro.2017.12.007. Epub 2017 Dec 19.

引用本文的文献

1
Challenges and advances in mouse modeling for human pancreatic tumorigenesis and metastasis.
Cancer Metastasis Rev. 2013 Jun;32(1-2):83-107. doi: 10.1007/s10555-012-9408-2.
2
Exploring the link between MORF4L1 and risk of breast cancer.
Breast Cancer Res. 2011 Apr 5;13(2):R40. doi: 10.1186/bcr2862.

本文引用的文献

1
Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras.
Cancer Cell. 2009 Nov 6;16(5):379-89. doi: 10.1016/j.ccr.2009.09.027.
2
Pancreatic intraepithelial neoplasia and pancreatic tumorigenesis: of mice and men.
Arch Pathol Lab Med. 2009 Mar;133(3):375-81. doi: 10.5858/133.3.375.
4
Tumor-node-metastasis staging of pancreatic adenocarcinoma.
CA Cancer J Clin. 2008 Mar-Apr;58(2):111-25. doi: 10.3322/CA.2007.0012. Epub 2008 Feb 13.
5
Quantification of mRNA using real-time RT-PCR.
Nat Protoc. 2006;1(3):1559-82. doi: 10.1038/nprot.2006.236.
7
Genetics and biology of pancreatic ductal adenocarcinoma.
Genes Dev. 2006 May 15;20(10):1218-49. doi: 10.1101/gad.1415606.
8
Pancreatic adenocarcinoma -- genetic portrait from chromosomes to microarrays.
Genes Chromosomes Cancer. 2006 Aug;45(8):721-30. doi: 10.1002/gcc.20337.
9
Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse.
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5947-52. doi: 10.1073/pnas.0601273103. Epub 2006 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验