Suppr超能文献

相似文献

1
Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties.
ACS Nano. 2010 Nov 23;4(11):6725-34. doi: 10.1021/nn102237c. Epub 2010 Oct 22.
2
Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
J Am Chem Soc. 2014 Jan 8;136(1):396-404. doi: 10.1021/ja410663g. Epub 2013 Dec 17.
3
4
Synthesis of Au@Ag core-shell nanocubes with finely tuned shell thicknesses for surface-enhanced Raman spectroscopic detection.
RSC Adv. 2024 Jun 24;14(28):20145-20151. doi: 10.1039/d4ra03135k. eCollection 2024 Jun 18.
6
Enriching Silver Nanocrystals with a Second Noble Metal.
Acc Chem Res. 2017 Jul 18;50(7):1774-1784. doi: 10.1021/acs.accounts.7b00216. Epub 2017 Jul 5.
7
Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor.
Chemistry. 2010 Sep 3;16(33):10234-9. doi: 10.1002/chem.201000341.
8
Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles.
J Am Chem Soc. 2016 Apr 27;138(16):5190-3. doi: 10.1021/jacs.6b00594. Epub 2016 Apr 13.
9
Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability.
ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3750-7. doi: 10.1021/am500506j. Epub 2014 Feb 6.
10
Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity.
J Am Chem Soc. 2014 Jun 11;136(23):8153-6. doi: 10.1021/ja502472x. Epub 2014 May 29.

引用本文的文献

1
Studying the Synthesis of Silver Nanocubes and Their Structural Evolution under Controlled Galvanic Reactions.
J Phys Chem C Nanomater Interfaces. 2025 Jul 25;129(31):14204-14213. doi: 10.1021/acs.jpcc.5c03561. eCollection 2025 Aug 7.
2
Optical Response Tailoring via Morphosynthesis of Ag@Au Nanoparticles.
Nanomaterials (Basel). 2025 Jul 19;15(14):1125. doi: 10.3390/nano15141125.
3
Plasmonic Nanocubes with a Controllable "Crescent Arc" Facet: Tunable Hotspot Engineering for Highly Reliable and Sensitive SERS Detection.
Anal Chem. 2024 Oct 29;96(43):17453-17462. doi: 10.1021/acs.analchem.4c05334. Epub 2024 Oct 17.
4
Quantifying the ultimate limit of plasmonic near-field enhancement.
Nat Commun. 2024 Oct 11;15(1):8803. doi: 10.1038/s41467-024-53210-8.
6
Rh@Au Core-Shell Nanocrystals with the Core in Tensile Strain and the Shell in Compressive Strain.
J Phys Chem C Nanomater Interfaces. 2024 Jan 15;128(3):1377-1385. doi: 10.1021/acs.jpcc.3c06793. eCollection 2024 Jan 25.
7
Plasmonic Multi-Layered Built-in Hotspots Nanogaps for Effectively Activating Analytes.
Adv Sci (Weinh). 2024 Feb;11(7):e2306125. doi: 10.1002/advs.202306125. Epub 2023 Dec 3.
9
Time Evolution of Plasmonic Features in Pentagonal Ag Clusters.
Molecules. 2023 Jul 26;28(15):5671. doi: 10.3390/molecules28155671.
10
Silver Nanocubes: From Serendipity to Mechanistic Understanding, Rational Synthesis, and Niche Applications.
Chem Mater. 2023 Apr 17;35(9):3427-3449. doi: 10.1021/acs.chemmater.3c00472. eCollection 2023 May 9.

本文引用的文献

1
Controlling the shapes of silver nanocrystals with different capping agents.
J Am Chem Soc. 2010 Jun 30;132(25):8552-3. doi: 10.1021/ja103655f.
2
Facile synthesis of gold octahedra by direct reduction of HAuCl4 in an aqueous solution.
Chem Asian J. 2010 Jun 1;5(6):1312-6. doi: 10.1002/asia.201000085.
3
Rapid epitaxial growth of Ag on Au nanoparticles: from Au nanorods to core-shell Au@Ag octahedrons.
Chemistry. 2010 May 17;16(19):5558-63. doi: 10.1002/chem.201000144.
6
Asymmetric hollow nanorod formation through a partial galvanic replacement reaction.
J Am Chem Soc. 2009 Dec 30;131(51):18210-1. doi: 10.1021/ja907640h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验