Department of Chemical and Biochemical Engineering and Center for Biocatalysis and Bioprocessing, University of Iowa, Iowa City, IA 52242, USA.
Microbiology (Reading). 2011 Feb;157(Pt 2):583-592. doi: 10.1099/mic.0.043612-0. Epub 2010 Oct 21.
N-Demethylation of many xenobiotics and naturally occurring purine alkaloids such as caffeine and theobromine is primarily catalysed in higher organisms, ranging from fungi to mammals, by the well-studied membrane-associated cytochrome P450s. In contrast, there is no well-characterized enzyme for N-demethylation of purine alkaloids from bacteria, despite several reports on their utilization as sole source of carbon and nitrogen. Here, we provide what we believe to be the first detailed characterization of a purified N-demethylase from Pseudomonas putida CBB5. The soluble N-demethylase holoenzyme is composed of two components, a reductase component with cytochrome c reductase activity (Ccr) and a two-subunit N-demethylase component (Ndm). Ndm, with a native molecular mass of 240 kDa, is composed of NdmA (40 kDa) and NdmB (35 kDa). Ccr transfers reducing equivalents from NAD(P)H to Ndm, which catalyses an oxygen-dependent N-demethylation of methylxanthines to xanthine, formaldehyde and water. Paraxanthine and 7-methylxanthine were determined to be the best substrates, with apparent K(m) and k(cat) values of 50.4±6.8 μM and 16.2±0.6 min(-1), and 63.8±7.5 μM and 94.8±3.0 min(-1), respectively. Ndm also displayed activity towards caffeine, theobromine, theophylline and 3-methylxanthine, all of which are growth substrates for this organism. Ndm was deduced to be a Rieske [2Fe-2S]-domain-containing non-haem iron oxygenase based on (i) its distinct absorption spectrum and (ii) significant identity of the N-terminal sequences of NdmA and NdmB with the gene product of an uncharacterized caffeine demethylase in P. putida IF-3 and a hypothetical protein in Janthinobacterium sp. Marseille, both predicted to be Rieske non-haem iron oxygenases.
许多外源化学物和天然嘌呤生物碱(如咖啡因和可可碱)的 N-去甲基化主要在高等生物(从真菌到哺乳动物)中由研究充分的膜结合细胞色素 P450 催化。相比之下,尽管有几篇关于细菌利用嘌呤生物碱作为唯一碳源和氮源的报道,但尚未发现细菌中嘌呤生物碱 N-去甲基化的特征酶。在这里,我们提供了我们认为是来自恶臭假单胞菌 CBB5 的纯化 N-去甲基酶的第一个详细特征描述。可溶性 N-去甲基酶全酶由两个组成部分组成,一个具有细胞色素 c 还原酶活性的还原酶组成部分(Ccr)和一个由两个亚基组成的 N-去甲基酶组成部分(Ndm)。Ndm 的天然分子量为 240 kDa,由 NdmA(40 kDa)和 NdmB(35 kDa)组成。Ccr 将还原当量从 NAD(P)H 转移到 Ndm,Ndm 催化甲基黄嘌呤的氧依赖性 N-去甲基化,生成黄嘌呤、甲醛和水。茶碱和 7-甲基黄嘌呤被确定为最佳底物,其表观 K(m)和 k(cat)值分别为 50.4±6.8 μM 和 16.2±0.6 min(-1),63.8±7.5 μM 和 94.8±3.0 min(-1)。Ndm 对咖啡因、可可碱、茶碱和 3-甲基黄嘌呤也表现出活性,所有这些都是该生物的生长底物。基于以下几点推断 Ndm 是一种 Rieske [2Fe-2S]-结构域含有非血红素铁加氧酶:(i) 其独特的吸收光谱和 (ii) NdmA 和 NdmB 的 N 端序列与恶臭假单胞菌 IF-3 中未鉴定的咖啡因去甲基酶的基因产物和 Janthinobacterium sp. Marseille 中的一个假设蛋白具有显著的同一性,两者均预测为 Rieske 非血红素铁加氧酶。