Universidade de São Paulo, São Carlos, Brazil.
IEEE Trans Vis Comput Graph. 2010 Nov-Dec;16(6):1281-90. doi: 10.1109/TVCG.2010.207.
Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is necessary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection (PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance information between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.
大多数多维投影技术都依赖于数据实例之间的距离(相似度)信息,将高维数据嵌入到可视空间中。当数据具有笛卡尔坐标时,需要额外的计算工作量来计算所需的距离,这使得多维投影在处理交互性和海量数据的应用中变得不可行。本文提出的一种新的多维投影技术,称为部分线性多维投影(PLMP),专门用于处理以笛卡尔高维空间表示的多元数据,只需要成对的代表样本之间的距离信息。当处理大型数据集时,该特性使 PLMP 比以前的方法更快,同时在精度方面仍具有竞争力。此外,通过了解高维空间中数据实例的变化范围,我们可以使 PLMP 成为一种真正的流数据投影技术,这是以前的方法所没有的特点。