Suppr超能文献

为事件报告系统建立一个全球学习社区。

Establishing a global learning community for incident-reporting systems.

作者信息

Pham Julius Cuong, Gianci Sebastiana, Battles James, Beard Paula, Clarke John R, Coates Hilary, Donaldson Liam, Eldridge Noel, Fletcher Martin, Goeschel Christine A, Heitmiller Eugenie, Hensen Jörgen, Kelley Edward, Loeb Jerod, Runciman William, Sheridan Susan, Wu Albert W, Pronovost Peter J

机构信息

The Johns Hopkins University School of Medicine, 1909 Thames Street, 2nd Floor, Baltimore, MD 21231, USA.

出版信息

Qual Saf Health Care. 2010 Oct;19(5):446-51. doi: 10.1136/qshc.2009.037739.

Abstract

BACKGROUND

Incident-reporting systems (IRS) collect snapshots of hazards, mistakes and system failures occurring in healthcare. These data repositories are a cornerstone of patient safety improvement. Compared with systems in other high-risk industries, healthcare IRS are fragmented and isolated, and have not established best practices for implementation and utilisation.

DISCUSSION

Patient safety experts from eight countries convened in 2008 to establish a global community to advance the science of learning from mistakes. This convenience sample of experts all had experience managing large incident-reporting systems. This article offers guidance through a presentation of expert discussions about methods to identify, analyse and prioritise incidents, mitigate hazards and evaluate risk reduction.

摘要

背景

事件报告系统(IRS)收集医疗保健中发生的危害、失误和系统故障的即时情况。这些数据库是改善患者安全的基石。与其他高风险行业的系统相比,医疗保健IRS分散且孤立,尚未确立实施和利用的最佳做法。

讨论

来自八个国家的患者安全专家于2008年召开会议,建立了一个全球社区,以推进从失误中学习的科学。这个由专家组成的便利样本都有管理大型事件报告系统的经验。本文通过介绍专家关于识别、分析和确定事件优先级、减轻危害以及评估风险降低方法的讨论,提供指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验