Suppr超能文献

在线环境地图构建的鲁棒重定位及其评估。

Robust Relocalization and Its Evaluation for Online Environment Map Construction.

出版信息

IEEE Trans Vis Comput Graph. 2011 Jul;17(7):875-87. doi: 10.1109/TVCG.2010.243. Epub 2010 Nov 9.

Abstract

The acquisition of surround-view panoramas using a single hand-held or head-worn camera relies on robust real-time camera orientation tracking and relocalization. This paper presents robust methodology and evaluation for camera orientation relocalization, using virtual keyframes for online environment map construction. In the case of tracking loss, incoming camera frames are matched against known-orientation keyframes to re-estimate camera orientation. Instead of solely using real keyframes from incoming video, the proposed approach employs virtual keyframes which are distributed strategically within completed portions of an environment map. To improve tracking speed, we introduce a new variant of our system which carries out relocalization only when tracking fails and uses inexpensive image-patch descriptors. We compare different system variants using three evaluation methods to show that the proposed system is useful in a practical sense. To improve relocalization robustness against lighting changes in indoor and outdoor environments, we propose a new approach based on illumination normalization and saturated area removal. We examine the performance of our solution over several indoor and outdoor video sequences, evaluating relocalization rates based on ground truth from a pan-tilt unit.

摘要

使用单个手持或头戴相机获取全景环视图像依赖于强大的实时相机方向跟踪和重新定位功能。本文提出了一种使用虚拟关键帧进行在线环境地图构建的强大相机方向重新定位方法和评估。在跟踪丢失的情况下,传入的相机帧与已知方向的关键帧进行匹配,以重新估计相机方向。与仅使用来自传入视频的真实关键帧不同,所提出的方法使用虚拟关键帧,这些关键帧在环境地图的已完成部分中进行策略性分布。为了提高跟踪速度,我们引入了我们系统的一个新变体,仅在跟踪失败时进行重新定位,并使用廉价的图像补丁描述符。我们使用三种评估方法比较不同的系统变体,以表明所提出的系统在实际意义上是有用的。为了提高对室内和室外环境光照变化的重新定位鲁棒性,我们提出了一种基于光照归一化和饱和区域去除的新方法。我们在几个室内和室外视频序列上检查了我们解决方案的性能,根据平移倾斜单元的地面实况评估重新定位率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验