Durston A J, Jansen H J, Wacker S A
Sylvius Laboratory, Leiden, The Netherlands.
ScientificWorldJournal. 2010 Nov 4;10:2207-14. doi: 10.1100/tsw.2010.208.
We review a recently discovered developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early nonorganizer mesoderm (NOM) and the Spemann organizer (SO). The timer is characterized by temporally collinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the NOM) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilized by signals from the SO. The NOM and the SO undergo timed interactions due to morphogenetic movements during gastrulation, which lead to the formation of an anterior-posterior axial pattern and stable Hox gene expression. When separated from each other, neither the NOM nor the SO is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that the NOM acquires transiently stable hox codes and spatial collinearity, and that morphogenetic movements then continually bring new cells from the NOM within the range of SO signals that cause transfer of the mesodermal pattern to a stable pattern in neurectoderm and, thereby, create patterned axial structures. In doing so, the age of the NOM, but not the age of the SO, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the NOM is linked to mesodermal Hox expression. The role of the SO for trunk patterning turns out to be the induction of neural tissue as prerequisite for neural hox patterning. Apparently, development of a stable anterior-posterior pattern requires neural hox patterning. We believe that this mechanism represents a developmental principle.
我们回顾了一种最近发现的发育机制。脊椎动物躯干的前后位置信息是由早期非组织者中胚层(NOM)中的一个定时器与施佩曼组织者(SO)之间的顺序相互作用产生的。该定时器的特征是在非洲爪蟾原肠胚的早期腹侧和外侧中胚层(即NOM)中一系列Hox基因的时间共线性激活。这种早期Hox基因表达是短暂的,除非它被来自SO的信号稳定下来。由于原肠胚形成过程中的形态发生运动,NOM和SO进行定时相互作用,这导致了前后轴模式的形成和稳定的Hox基因表达。当彼此分离时,NOM和SO都不能诱导躯干的前后模式形成。我们提出了一个模型,描述了NOM获得短暂稳定的hox编码和空间共线性,然后形态发生运动不断地将来自NOM的新细胞带入SO信号范围内,这些信号导致中胚层模式转移到神经外胚层中的稳定模式,从而创建有模式的轴向结构。在此过程中,NOM的年龄而非SO的年龄定义了沿前后轴的位置值。我们推测来自NOM的时间信息与中胚层Hox表达相关联。SO在躯干模式形成中的作用原来是诱导神经组织,这是神经hox模式形成的先决条件。显然,稳定的前后模式的发育需要神经hox模式形成。我们认为这种机制代表了一种发育原理。