Suppr超能文献

时空转换:一项发展原则。

Time-space translation: a developmental principle.

作者信息

Durston A J, Jansen H J, Wacker S A

机构信息

Sylvius Laboratory, Leiden, The Netherlands.

出版信息

ScientificWorldJournal. 2010 Nov 4;10:2207-14. doi: 10.1100/tsw.2010.208.

Abstract

We review a recently discovered developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early nonorganizer mesoderm (NOM) and the Spemann organizer (SO). The timer is characterized by temporally collinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the NOM) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilized by signals from the SO. The NOM and the SO undergo timed interactions due to morphogenetic movements during gastrulation, which lead to the formation of an anterior-posterior axial pattern and stable Hox gene expression. When separated from each other, neither the NOM nor the SO is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that the NOM acquires transiently stable hox codes and spatial collinearity, and that morphogenetic movements then continually bring new cells from the NOM within the range of SO signals that cause transfer of the mesodermal pattern to a stable pattern in neurectoderm and, thereby, create patterned axial structures. In doing so, the age of the NOM, but not the age of the SO, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the NOM is linked to mesodermal Hox expression. The role of the SO for trunk patterning turns out to be the induction of neural tissue as prerequisite for neural hox patterning. Apparently, development of a stable anterior-posterior pattern requires neural hox patterning. We believe that this mechanism represents a developmental principle.

摘要

我们回顾了一种最近发现的发育机制。脊椎动物躯干的前后位置信息是由早期非组织者中胚层(NOM)中的一个定时器与施佩曼组织者(SO)之间的顺序相互作用产生的。该定时器的特征是在非洲爪蟾原肠胚的早期腹侧和外侧中胚层(即NOM)中一系列Hox基因的时间共线性激活。这种早期Hox基因表达是短暂的,除非它被来自SO的信号稳定下来。由于原肠胚形成过程中的形态发生运动,NOM和SO进行定时相互作用,这导致了前后轴模式的形成和稳定的Hox基因表达。当彼此分离时,NOM和SO都不能诱导躯干的前后模式形成。我们提出了一个模型,描述了NOM获得短暂稳定的hox编码和空间共线性,然后形态发生运动不断地将来自NOM的新细胞带入SO信号范围内,这些信号导致中胚层模式转移到神经外胚层中的稳定模式,从而创建有模式的轴向结构。在此过程中,NOM的年龄而非SO的年龄定义了沿前后轴的位置值。我们推测来自NOM的时间信息与中胚层Hox表达相关联。SO在躯干模式形成中的作用原来是诱导神经组织,这是神经hox模式形成的先决条件。显然,稳定的前后模式的发育需要神经hox模式形成。我们认为这种机制代表了一种发育原理。

相似文献

1
Time-space translation: a developmental principle.
ScientificWorldJournal. 2010 Nov 4;10:2207-14. doi: 10.1100/tsw.2010.208.
2
Review: Time-space translation regulates trunk axial patterning in the early vertebrate embryo.
Genomics. 2010 May;95(5):250-5. doi: 10.1016/j.ygeno.2009.11.002. Epub 2009 Nov 26.
4
A time space translation hypothesis for vertebrate axial patterning.
Semin Cell Dev Biol. 2015 Jun;42:86-93. doi: 10.1016/j.semcdb.2015.06.001. Epub 2015 Jun 5.
5
Two Tier Hox Collinearity Mediates Vertebrate Axial Patterning.
Front Cell Dev Biol. 2018 Sep 4;6:102. doi: 10.3389/fcell.2018.00102. eCollection 2018.
7
ADHFe1: a novel enzyme involved in retinoic acid-dependent Hox activation.
Int J Dev Biol. 2017;61(3-4-5):303-310. doi: 10.1387/ijdb.160252af.
9
Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis.
PLoS One. 2017 Apr 11;12(4):e0175287. doi: 10.1371/journal.pone.0175287. eCollection 2017.
10
The role of the Spemann organizer in anterior-posterior patterning of the trunk.
Mech Dev. 2007 Sep-Oct;124(9-10):668-81. doi: 10.1016/j.mod.2007.07.004. Epub 2007 Jul 18.

引用本文的文献

2
Early patterning in a chondrichthyan model, the small spotted dogfish: towards the gnathostome ancestral state.
J Anat. 2013 Jan;222(1):56-66. doi: 10.1111/j.1469-7580.2012.01552.x. Epub 2012 Aug 20.
3
Developmental principles: fact or fiction.
ScientificWorldJournal. 2012;2012:980151. doi: 10.1100/2012/980151. Epub 2012 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验