Suppr超能文献

电机不确定性的补偿。

Compensation for changing motor uncertainty.

机构信息

Department of Psychology, New York University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2010 Nov 4;6(11):e1000982. doi: 10.1371/journal.pcbi.1000982.

Abstract

When movement outcome differs consistently from the intended movement, errors are used to correct subsequent movements (e.g., adaptation to displacing prisms or force fields) by updating an internal model of motor and/or sensory systems. Here, we examine changes to an internal model of the motor system under changes in the variance structure of movement errors lacking an overall bias. We introduced a horizontal visuomotor perturbation to change the statistical distribution of movement errors anisotropically, while monetary gains/losses were awarded based on movement outcomes. We derive predictions for simulated movement planners, each differing in its internal model of the motor system. We find that humans optimally respond to the overall change in error magnitude, but ignore the anisotropy of the error distribution. Through comparison with simulated movement planners, we found that aimpoints corresponded quantitatively to an ideal movement planner that updates a strictly isotropic (circular) internal model of the error distribution. Aimpoints were planned in a manner that ignored the direction-dependence of error magnitudes, despite the continuous availability of unambiguous information regarding the anisotropic distribution of actual motor errors.

摘要

当运动结果与预期运动不一致时,就会通过更新运动和/或感觉系统的内部模型来纠正后续运动(例如,适应移动物镜或力场)。在这里,我们研究了在运动误差方差结构发生变化而没有整体偏差的情况下,运动系统内部模型的变化。我们引入了水平视动干扰,以非各向同性的方式改变运动误差的统计分布,同时根据运动结果给予货币奖励/损失。我们为模拟运动规划者推导了预测,每个规划者的内部运动系统模型都不同。我们发现,人类可以最优地响应误差幅度的整体变化,但忽略了误差分布的各向异性。通过与模拟运动规划者的比较,我们发现,目标点与更新误差分布的严格各向同性(圆形)内部模型的理想运动规划者定量对应。目标点的规划方式忽略了误差幅度的方向依赖性,尽管可以连续获得关于实际运动误差各向异性分布的明确信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb74/2973820/7e694f55ee2e/pcbi.1000982.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验