Kumar D, Carvalho P, Antunes M, Paiva R P, Henriques J
Centre for Informatics and Systems, University of Coimbra, Portugal.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4566-9. doi: 10.1109/IEMBS.2010.5625940.
Heart sounds entail crucial heart function information. In conditions of heart abnormalities, such as valve dysfunctions and rapid blood flow, additional sounds are heard in regular heart sounds, which can be employed in pathology diagnosis. These additional sounds, or so-called murmurs, show different characteristics with respect to cardiovascular heart diseases, namely heart valve disorders. In this paper, we present a method of heart murmur classification composed by three basic steps: feature extraction, feature selection, and classification using a nonlinear classifier. A new set of 17 features extracted in the time, frequency and in the state space domain is suggested. The features applied for murmur classification are selected using the floating sequential forward method (SFFS). Using this approach, the original set of 17 features is reduced to 10 features. The classification results achieved using the proposed method are compared on a common database with the classification results obtained using the feature sets proposed in two well-known state of the art methods for murmur classification. The achieved results suggest that the proposed method achieves slightly better results using a smaller feature set.
心音蕴含着关键的心脏功能信息。在心脏出现异常的情况下,如瓣膜功能障碍和血流加速,正常心音中会听到额外的声音,这些声音可用于病理诊断。这些额外的声音,即所谓的杂音,在心血管疾病(即心脏瓣膜紊乱)方面表现出不同的特征。在本文中,我们提出了一种心杂音分类方法,该方法由三个基本步骤组成:特征提取、特征选择以及使用非线性分类器进行分类。我们提出了一组在时间、频率和状态空间域中提取的17个新特征。用于杂音分类的特征使用浮动顺序前向法(SFFS)进行选择。通过这种方法,将原来的17个特征集减少到了10个特征。我们将使用所提出方法获得的分类结果与在一个通用数据库上使用两种著名的杂音分类先进方法中提出的特征集所获得的分类结果进行了比较。所取得的结果表明,所提出的方法使用较小的特征集取得了稍好的结果。