Malavé Mario O, Zhao Xuran, Kong Koon Yin, Marcus Adam I, Wang May D
Georgia Institute of Technology, Atlanta, 30332 USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3142-5. doi: 10.1109/IEMBS.2010.5627190.
Microtubule (MT) dynamics quantification includes modeling of elongation, rapid shortening, and pauses. It indicates the effect of the cancer treatment drug paclitaxel because the drug causes MTs to bundle, which will in turn inhibit successful mitosis of cancerous cells. Thus, automatic MT dynamics analysis has been researched intensely because it allows for faster evaluation of potential cancer treatments and better understanding of drug effects on a cell. However, most current literatures still use manual initialization. In this work, we propose an automatic initialization algorithm that selects isolated and active tips for tracking. We use a Gaussian match filter to enhance the MT structures, and a novel technique called Pixel Nucleus Analysis (PNA) for isolated MT tip detection. To find dynamic tips, we applied a masked FFT in the temporal domain followed by K-means clustering. To evaluate the selected tips, we used a low level tip linking algorithm, and show the results of applying the algorithm to a model image and five MCF-7 breast cancer cell line images captured using fluorescent confocal microscopy. Finally, we compare tip selection criteria with existing automatic selection algorithms. We conclude that the proposed analysis is an effective technique based on three criteria which include outer region selection, separation, and MT dynamics.
微管(MT)动力学量化包括对伸长、快速缩短和停顿的建模。它显示了癌症治疗药物紫杉醇的作用,因为该药物会导致微管聚集,进而抑制癌细胞的成功有丝分裂。因此,自动微管动力学分析受到了深入研究,因为它能够更快地评估潜在的癌症治疗方法,并更好地理解药物对细胞的影响。然而,目前大多数文献仍采用手动初始化。在这项工作中,我们提出了一种自动初始化算法,该算法选择孤立且活跃的末端进行跟踪。我们使用高斯匹配滤波器来增强微管结构,并使用一种名为像素核分析(PNA)的新技术来检测孤立的微管末端。为了找到动态末端,我们在时域中应用了掩码快速傅里叶变换(FFT),随后进行K均值聚类。为了评估所选末端,我们使用了一种低级末端链接算法,并展示了将该算法应用于模型图像以及使用荧光共聚焦显微镜拍摄的五张MCF - 7乳腺癌细胞系图像的结果。最后,我们将末端选择标准与现有的自动选择算法进行了比较。我们得出结论,基于包括外部区域选择、分离和微管动力学这三个标准,所提出的分析是一种有效的技术。