Suppr超能文献

一种新颖的医学图像质量指数。

A novel medical image quality index.

机构信息

Department of Dental Laboratory Technology, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan, Republic of China.

出版信息

J Digit Imaging. 2011 Oct;24(5):874-82. doi: 10.1007/s10278-010-9353-y.

Abstract

A novel medical image quality index using grey relational coefficient calculation is proposed in this study. Three medical modalities, DR, CT and MRI, using 30 or 60 images with a total of 120 images used for experimentation. These images were first compressed at ten different compression ratios (10 ∼ 100) using a medical image compression algorithm named JJ2000. Following that, the quality of the reconstructed images was evaluated using the grey relational coefficient calculation. The results were shown consistent with popular objective quality metrics. The impact of different image aspects on four grey relational coefficient methods were further tested. The results showed that these grey relational coefficients have different slopes but very high consistency for various image areas. Nagai's grey relational coefficient was chosen in this study because of higher calculation speed and sensitivity. A comparison was also made between this method and other windows-based objective metrics for various window sizes. Studies found that the grey relational coefficient results are less sensitive to window size changes. The performance of this index is better than some windows-based objective metrics and can be used as an image quality index.

摘要

本研究提出了一种利用灰色关联系数计算的新型医学图像质量指数。使用三种医学模式(DR、CT 和 MRI),共 120 张图像,其中 30 或 60 张图像用于实验。这些图像首先使用名为 JJ2000 的医学图像压缩算法在十个不同的压缩比(10~100)下进行压缩。然后,使用灰色关联系数计算来评估重建图像的质量。结果与流行的客观质量指标一致。进一步测试了不同图像方面对四种灰色关联系数方法的影响。结果表明,这些灰色关联系数对于不同的图像区域具有不同的斜率,但具有非常高的一致性。由于计算速度和灵敏度更高,本研究选择了 Nagai 的灰色关联系数。还比较了该方法与不同窗口大小的其他基于窗口的客观指标的性能。研究发现,灰色关联系数结果对窗口大小变化的敏感性较低。该指数的性能优于一些基于窗口的客观指标,可以用作图像质量指数。

相似文献

1
A novel medical image quality index.
J Digit Imaging. 2011 Oct;24(5):874-82. doi: 10.1007/s10278-010-9353-y.
2
JPEG2000 still image coding quality.
J Digit Imaging. 2013 Oct;26(5):866-74. doi: 10.1007/s10278-013-9603-x.
3
Quality of compressed medical images.
J Digit Imaging. 2007 Jun;20(2):149-59. doi: 10.1007/s10278-007-9013-z. Epub 2007 Feb 22.
10
Enhancement and compression of digital chest radiographs.
J Thorac Imaging. 1990 Jan;5(1):92-5. doi: 10.1097/00005382-199001000-00014.

引用本文的文献

1
Biomedical imaging informatics in the era of precision medicine: progress, challenges, and opportunities.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1010-3. doi: 10.1136/amiajnl-2013-002315.

本文引用的文献

1
Quality of compressed medical images.
J Digit Imaging. 2007 Jun;20(2):149-59. doi: 10.1007/s10278-007-9013-z. Epub 2007 Feb 22.
2
A blurring index for medical images.
J Digit Imaging. 2006 Jun;19(2):118-25. doi: 10.1007/s10278-005-8736-y.
3
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.
4
A statistical method for evaluation quality of medical images: a case study in bit discarding and image compression.
Comput Med Imaging Graph. 2004 Jun;28(4):167-75. doi: 10.1016/j.compmedimag.2004.01.003.
5
A novel image quality index using Moran I statistics.
Phys Med Biol. 2003 Apr 21;48(8):N131-7. doi: 10.1088/0031-9155/48/8/402.
6
Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic transmission.
Radiology. 2000 Dec;217(3):772-9. doi: 10.1148/radiology.217.3.r00nv22772.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验