Suppr超能文献

通过定向蛋白质相互作用网络中的边缘来发现途径。

Discovering pathways by orienting edges in protein interaction networks.

机构信息

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Nucleic Acids Res. 2011 Mar;39(4):e22. doi: 10.1093/nar/gkq1207. Epub 2010 Nov 24.

Abstract

Modern experimental technology enables the identification of the sensory proteins that interact with the cells' environment or various pathogens. Expression and knockdown studies can determine the downstream effects of these interactions. However, when attempting to reconstruct the signaling networks and pathways between these sources and targets, one faces a substantial challenge. Although pathways are directed, high-throughput protein interaction data are undirected. In order to utilize the available data, we need methods that can orient protein interaction edges and discover high-confidence pathways that explain the observed experimental outcomes. We formalize the orientation problem in weighted protein interaction graphs as an optimization problem and present three approximation algorithms based on either weighted Boolean satisfiability solvers or probabilistic assignments. We use these algorithms to identify pathways in yeast. Our approach recovers twice as many known signaling cascades as a recent unoriented signaling pathway prediction technique and over 13 times as many as an existing network orientation algorithm. The discovered paths match several known signaling pathways and suggest new mechanisms that are not currently present in signaling databases. For some pathways, including the pheromone signaling pathway and the high-osmolarity glycerol pathway, our method suggests interesting and novel components that extend current annotations.

摘要

现代实验技术使我们能够识别与细胞环境或各种病原体相互作用的感觉蛋白。表达和敲低研究可以确定这些相互作用的下游效应。然而,当试图重建这些源和目标之间的信号网络和途径时,我们面临着一个重大挑战。尽管途径是定向的,但高通量蛋白质相互作用数据是无向的。为了利用现有数据,我们需要能够定向蛋白质相互作用边缘并发现高可信度途径的方法,以解释观察到的实验结果。我们将加权蛋白质相互作用图中的定向问题形式化,作为一个优化问题,并提出了三种基于加权布尔可满足性求解器或概率分配的近似算法。我们使用这些算法来识别酵母中的途径。我们的方法恢复了两倍于最近无向信号通路预测技术的已知信号级联,并且比现有的网络定向算法多 13 倍以上。发现的路径与几个已知的信号通路相匹配,并提出了目前信号数据库中不存在的新机制。对于一些途径,包括信息素信号途径和高渗甘油途径,我们的方法提出了有趣和新颖的组件,扩展了当前的注释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2d1/3045580/f0a5c79ef8dc/gkq1207f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验