IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), 1 rue Laurent Fries, BP10142, Illkirch F-67400, France.
Science. 2010 Nov 26;330(6008):1203-9. doi: 10.1126/science.1194294.
Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.
原核核糖体的晶体结构详细描述了翻译机制普遍保守的核心。然而,真核生物翻译过程的许多方面与原核生物并不相同。在 4.15 埃分辨率下测定的酵母 80S 核糖体的晶体结构揭示了真核核糖体的更高复杂性,它比细菌核糖体大 40%。我们的模型展示了真核生物特有的元件如何极大地扩展核糖体内部相互作用的网络,并深入了解蛋白质合成的真核生物特有特征。我们的晶体捕获了核糖体在棘轮状态下的结构,这对于 mRNA 和转移 RNA(tRNA)的易位是必不可少的,在这种状态下,小核糖体亚基相对于大亚基旋转。我们描述了参与棘轮的两个核糖体亚基的构象变化及其在两个相关亚基之间的协调以及 mRNA 和 tRNA 易位中的作用。