Suppr超能文献

Epac2 介导线粒体重塑:对疾病的影响。

Epac2-mediated dendritic spine remodeling: implications for disease.

机构信息

Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

出版信息

Mol Cell Neurosci. 2011 Feb;46(2):368-80. doi: 10.1016/j.mcn.2010.11.008. Epub 2010 Nov 27.

Abstract

In the mammalian forebrain, most glutamatergic excitatory synapses occur on small dendritic protrusions called dendritic spines. Dendritic spines are highly plastic and can rapidly change morphology in response to numerous stimuli. This dynamic remodeling of dendritic spines is thought to be critical for information processing, memory and cognition. Conversely, multiple studies have revealed that neuropathologies such as autism spectrum disorders (ASDs) are linked with alterations in dendritic spine morphologies and miswiring of neural circuitry. One compelling hypothesis is that abnormal dendritic spine remodeling is a key contributing factor for this miswiring. Ongoing research has identified a number of mechanisms that are critical for the control of dendritic spine remodeling. Among these mechanisms, regulation of small GTPase signaling by guanine-nucleotide exchange factors (GEFs) is emerging as a critical mechanism for integrating physiological signals in the control of dendritic spine remodeling. Furthermore, multiple proteins associated with regulation of dendritic spine remodeling have also been implicated with multiple neuropathologies, including ASDs. Epac2, a GEF for the small GTPase Rap, has recently been described as a novel cAMP (yet PKA-independent) target localized to dendritic spines. Signaling via this protein in response to pharmacological stimulation or cAMP accumulation, via the dopamine D1/5 receptor, results in Rap activation, promotes structural destabilization, in the form of dendritic spine shrinkage, and functional depression due to removal of GluR2/3-containing AMPA receptors. In addition, Epac2 forms macromolecular complexes with ASD-associated proteins, which are sufficient to regulate Epac2 localization and function. Furthermore, rare non-synonymous variants of the EPAC2 gene associated with the ASD phenotype alter protein function, synaptic protein distribution, and spine morphology. We review here the role of Epac2 in the remodeling of dendritic spines under normal conditions, the mechanisms that underlie these effects, and the implications these disease-associated variants have on our understanding of the pathophysiology of ASD.

摘要

在哺乳动物的前脑中,大多数谷氨酸能兴奋性突触位于称为树突棘的小树突突起上。树突棘具有高度的可塑性,可以响应多种刺激迅速改变形态。这种树突棘的动态重塑被认为对于信息处理、记忆和认知至关重要。相反,多项研究表明,自闭症谱系障碍(ASD)等神经病理学与树突棘形态的改变和神经回路的连接错误有关。一个引人注目的假设是,异常的树突棘重塑是导致这种连接错误的关键因素。正在进行的研究已经确定了许多对于控制树突棘重塑至关重要的机制。在这些机制中,鸟嘌呤核苷酸交换因子(GEF)对小 GTPase 信号的调节正成为整合生理信号以控制树突棘重塑的关键机制。此外,与树突棘重塑调节相关的多种蛋白质也与多种神经病理学有关,包括 ASD。Epac2 是小 GTPase Rap 的 GEF,最近被描述为一种新型 cAMP(而非 PKA 独立)靶标,定位于树突棘。通过多巴胺 D1/5 受体对该蛋白的信号转导,通过药理学刺激或 cAMP 积累,导致 Rap 激活,促进结构不稳定,表现为树突棘收缩,以及由于 GluR2/3 包含的 AMPA 受体去除而导致的功能抑制。此外,Epac2 与 ASD 相关蛋白形成大分子复合物,足以调节 Epac2 的定位和功能。此外,与 ASD 表型相关的 EPAC2 基因的罕见非同义变体改变了蛋白质功能、突触蛋白分布和棘形态。我们在这里回顾了 Epac2 在正常条件下树突棘重塑中的作用、这些作用的机制以及这些与疾病相关的变体对我们理解 ASD 病理生理学的影响。

相似文献

1
Epac2-mediated dendritic spine remodeling: implications for disease.
Mol Cell Neurosci. 2011 Feb;46(2):368-80. doi: 10.1016/j.mcn.2010.11.008. Epub 2010 Nov 27.
2
Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines.
Nat Neurosci. 2009 Oct;12(10):1275-84. doi: 10.1038/nn.2386. Epub 2009 Sep 6.
3
Loss of EPAC2 alters dendritic spine morphology and inhibitory synapse density.
Mol Cell Neurosci. 2019 Jul;98:19-31. doi: 10.1016/j.mcn.2019.05.001. Epub 2019 May 4.
5
Exchange protein directly activated by cAMP 2 is required for corticotropin-releasing hormone-mediated spine loss.
Eur J Neurosci. 2019 Oct;50(7):3108-3114. doi: 10.1111/ejn.14487. Epub 2019 Jul 9.
6
Control of synapse development and plasticity by Rho GTPase regulatory proteins.
Prog Neurobiol. 2011 Jul;94(2):133-48. doi: 10.1016/j.pneurobio.2011.04.011. Epub 2011 Apr 22.
7
Scaffold protein X11α interacts with kalirin-7 in dendrites and recruits it to Golgi outposts.
J Biol Chem. 2014 Dec 19;289(51):35517-29. doi: 10.1074/jbc.M114.587709. Epub 2014 Nov 5.
8
Coordination of synaptic adhesion with dendritic spine remodeling by AF-6 and kalirin-7.
J Neurosci. 2008 Jun 11;28(24):6079-91. doi: 10.1523/JNEUROSCI.1170-08.2008.
9
Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders.
Psychiatry Clin Neurosci. 2019 Sep;73(9):541-550. doi: 10.1111/pcn.12899. Epub 2019 Jul 8.
10
Structural modulation of dendritic spines during synaptic plasticity.
Neuroscientist. 2012 Aug;18(4):326-41. doi: 10.1177/1073858411407206. Epub 2011 Jun 13.

引用本文的文献

3
Dendritic Spine Dynamics after Peripheral Nerve Injury: An Intravital Structural Study.
J Neurosci. 2020 May 27;40(22):4297-4308. doi: 10.1523/JNEUROSCI.2858-19.2020. Epub 2020 May 5.
4
Loss of EPAC2 alters dendritic spine morphology and inhibitory synapse density.
Mol Cell Neurosci. 2019 Jul;98:19-31. doi: 10.1016/j.mcn.2019.05.001. Epub 2019 May 4.
5
Molecular mechanisms underlying striatal synaptic plasticity: relevance to chronic alcohol consumption and seeking.
Eur J Neurosci. 2019 Mar;49(6):768-783. doi: 10.1111/ejn.13919. Epub 2018 Apr 20.
6
The EPAC-Rap1 pathway prevents and reverses cytokine-induced retinal vascular permeability.
J Biol Chem. 2018 Jan 12;293(2):717-730. doi: 10.1074/jbc.M117.815381. Epub 2017 Nov 20.
7
β-adrenergic signaling broadly contributes to LTP induction.
PLoS Comput Biol. 2017 Jul 24;13(7):e1005657. doi: 10.1371/journal.pcbi.1005657. eCollection 2017 Jul.
8
Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies.
Neural Plast. 2016;2016:8051861. doi: 10.1155/2016/8051861. Epub 2016 Oct 4.
9
Role of EPAC in cAMP-Mediated Actions in Adrenocortical Cells.
Front Endocrinol (Lausanne). 2016 Jun 13;7:63. doi: 10.3389/fendo.2016.00063. eCollection 2016.
10
Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases.
Neural Plast. 2016;2016:3025948. doi: 10.1155/2016/3025948. Epub 2016 Feb 18.

本文引用的文献

1
A hypothesized role for dendritic remodeling in the etiology of mood and anxiety disorders.
J Neuropsychiatry Clin Neurosci. 2010 Summer;22(3):256-64. doi: 10.1176/jnp.2010.22.3.256.
2
A network of networks: cytoskeletal control of compartmentalized function within dendritic spines.
Curr Opin Neurobiol. 2010 Oct;20(5):578-87. doi: 10.1016/j.conb.2010.06.009.
3
Neurobiological correlates of social functioning in autism.
Clin Psychol Rev. 2010 Aug;30(6):733-48. doi: 10.1016/j.cpr.2010.05.007. Epub 2010 May 27.
4
Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability.
Eur J Neurosci. 2010 Jun;31(12):2178-84. doi: 10.1111/j.1460-9568.2010.07270.x. Epub 2010 Jun 9.
5
Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation.
Nat Genet. 2010 Jun;42(6):489-91. doi: 10.1038/ng.589. Epub 2010 May 16.
6
Actin in dendritic spines: connecting dynamics to function.
J Cell Biol. 2010 May 17;189(4):619-29. doi: 10.1083/jcb.201003008. Epub 2010 May 10.
7
Synapse pathology in psychiatric and neurologic disease.
Curr Neurol Neurosci Rep. 2010 May;10(3):207-14. doi: 10.1007/s11910-010-0104-8.
8
Structural plasticity underlies experience-dependent functional plasticity of cortical circuits.
J Neurosci. 2010 Apr 7;30(14):4927-32. doi: 10.1523/JNEUROSCI.6403-09.2010.
9
Structural dynamics of dendritic spines in memory and cognition.
Trends Neurosci. 2010 Mar;33(3):121-9. doi: 10.1016/j.tins.2010.01.001.
10
Epac: defining a new mechanism for cAMP action.
Annu Rev Pharmacol Toxicol. 2010;50:355-75. doi: 10.1146/annurev.pharmtox.010909.105714.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验