Suppr超能文献

糖脂和糖蛋白贮积病发病机制的分子机制。

Molecular mechanisms of pathogenesis in a glycosphingolipid and a glycoprotein storage disease.

机构信息

Department of Genetics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA.

出版信息

Biochem Soc Trans. 2010 Dec;38(6):1453-7. doi: 10.1042/BST0381453.

Abstract

The lysosomal system comprises a specialized network of organelles crucial for the sorting, digestion, recycling and secretion of cellular components. With their content of hydrolytic enzymes, lysosomes regulate the degradation of a multitude of substrates that reach these organelles via the biosynthetic or the endocytic route. Gene defects that affect one or more of these hydrolases lead to LSDs (lysosomal storage diseases). This underscores the apparent lack of redundancy of these enzymes and the importance of the lysosomal system in cell and tissue homoeostasis. Some of the lysosomal enzymes may form multiprotein complexes, which usually work synergistically on substrates and, in this configuration, may respond more efficiently to changes in substrate load and composition. A well-characterized lysosomal multienzyme complex is the one comprising the glycosidases β-gal (β-galactosidase) and NEU1 (neuramidase-1), and of the serine carboxypeptidase PPCA (protective protein/cathepsin A). Three neurodegenerative LSDs are caused by either single or combined deficiency of these lysosomal enzymes. Sialidosis (NEU1 deficiency) and galactosialidosis (combined NEU1 and β-gal deficiency, secondary to a primary defect of PPCA) belong to the glycoprotein storage diseases, whereas GM1-gangliosidosis (β-gal deficiency) is a glycosphingolipid storage disease. Identification of novel molecular pathways that are deregulated because of loss of enzyme activity and/or accumulation of specific metabolites in various cell types has shed light on mechanisms of disease pathogenesis and may pave the way for future development of new therapies for these LSDs.

摘要

溶酶体系统由一系列专门的细胞器组成,对于细胞成分的分拣、消化、再循环和分泌至关重要。溶酶体含有水解酶,可调节通过生物合成或内吞途径到达这些细胞器的多种底物的降解。影响一种或多种水解酶的基因缺陷会导致 LSD(溶酶体贮积病)。这突显了这些酶显然缺乏冗余性,以及溶酶体系统在细胞和组织稳态中的重要性。一些溶酶体酶可能形成多蛋白复合物,这些复合物通常在底物上协同作用,并且在这种构象下,可能对底物负荷和组成的变化更有效应。一个特征明确的溶酶体多酶复合物是由糖苷酶β-gal(β-半乳糖苷酶)和 NEU1(神经氨酸酶-1)以及丝氨酸羧肽酶 PPCA(保护蛋白/组织蛋白酶 A)组成的复合物。三种神经退行性 LSD 是由这些溶酶体酶的单一或联合缺乏引起的。唾液酸贮积症(NEU1 缺乏)和半乳糖唾液酸贮积症(由于 PPCA 的原发性缺陷,继发于 NEU1 和β-gal 的联合缺乏)属于糖蛋白贮积病,而 GM1-神经节苷脂贮积症(β-gal 缺乏)是一种糖脂贮积病。由于酶活性丧失和/或特定代谢物在各种细胞类型中的积累而导致的新分子途径的鉴定,揭示了疾病发病机制的机制,并为这些 LSD 的新疗法的未来发展铺平了道路。

相似文献

1
Molecular mechanisms of pathogenesis in a glycosphingolipid and a glycoprotein storage disease.
Biochem Soc Trans. 2010 Dec;38(6):1453-7. doi: 10.1042/BST0381453.
2
Lysosomal multienzyme complex: pros and cons of working together.
Cell Mol Life Sci. 2014 Jun;71(11):2017-32. doi: 10.1007/s00018-013-1538-3. Epub 2013 Dec 15.
3
Lysosomal high molecular weight multienzyme complex.
Cell Mol Biol Lett. 2003;8(1):19-24.
4
Intermittent enzyme replacement therapy with recombinant human β-galactosidase prevents neuraminidase 1 deficiency.
J Biol Chem. 2020 Sep 25;295(39):13556-13569. doi: 10.1074/jbc.RA119.010794. Epub 2020 Jul 28.
7
Cathepsin A/protective protein: an unusual lysosomal multifunctional protein.
Cell Mol Life Sci. 1999 Dec;56(11-12):894-907. doi: 10.1007/s000180050482.
8
Heterodimerization of the sialidase NEU1 with the chaperone protective protein/cathepsin A prevents its premature oligomerization.
J Biol Chem. 2009 Oct 9;284(41):28430-28441. doi: 10.1074/jbc.M109.031419. Epub 2009 Aug 7.
10
Biochemical and molecular characterization of novel mutations in GLB1 and NEU1 in patient cells with lysosomal storage disorders.
Biochem Biophys Res Commun. 2015 Feb 20;457(4):554-60. doi: 10.1016/j.bbrc.2015.01.023. Epub 2015 Jan 16.

引用本文的文献

1
provokes NEU1-mediated release of a flagellin-binding decoy receptor that protects against lethal infection.
iScience. 2024 Aug 31;27(9):110866. doi: 10.1016/j.isci.2024.110866. eCollection 2024 Sep 20.
2
Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease.
Curr Issues Mol Biol. 2024 Jul 26;46(8):8031-8052. doi: 10.3390/cimb46080475.
3
Comparative transcriptome and methylome of polar bears, giant and red pandas reveal diet-driven adaptive evolution.
Evol Appl. 2024 Jun 17;17(6):e13731. doi: 10.1111/eva.13731. eCollection 2024 Jun.
5
Sialidase May Serve as a Potential Biomarker of Proliferation, Migration and Prognosis in Melanoma.
World J Oncol. 2022 Aug;13(4):222-234. doi: 10.14740/wjon1509. Epub 2022 Aug 23.
6
The Elastin Receptor Complex: An Emerging Therapeutic Target Against Age-Related Vascular Diseases.
Front Endocrinol (Lausanne). 2022 Feb 11;13:815356. doi: 10.3389/fendo.2022.815356. eCollection 2022.
7
Inflammatory arthritis complicating galactosialidosis: a case report.
BMC Rheumatol. 2021 Oct 11;5(1):41. doi: 10.1186/s41927-021-00208-0.
8
Therapeutic Potential of Neu1 in Alzheimer's Disease Via the Immune System.
Am J Alzheimers Dis Other Demen. 2021 Jan-Dec;36:1533317521996147. doi: 10.1177/1533317521996147.
9
Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease.
Int J Mol Sci. 2020 Apr 7;21(7):2566. doi: 10.3390/ijms21072566.
10
Neuraminidase 1 regulates proliferation, apoptosis and the expression of Cadherins in mammary carcinoma cells.
Mol Cell Biochem. 2019 Dec;462(1-2):207-215. doi: 10.1007/s11010-019-03623-7. Epub 2019 Sep 12.

本文引用的文献

1
Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue.
Biochim Biophys Acta. 2010 Jul-Aug;1802(7-8):659-72. doi: 10.1016/j.bbadis.2010.04.002. Epub 2010 Apr 11.
3
4
Heterodimerization of the sialidase NEU1 with the chaperone protective protein/cathepsin A prevents its premature oligomerization.
J Biol Chem. 2009 Oct 9;284(41):28430-28441. doi: 10.1074/jbc.M109.031419. Epub 2009 Aug 7.
5
Neuraminidase 1 is a negative regulator of lysosomal exocytosis.
Dev Cell. 2008 Jul;15(1):74-86. doi: 10.1016/j.devcel.2008.05.005.
6
Enzymatic activity of lysosomal carboxypeptidase (cathepsin) A is required for proper elastic fiber formation and inactivation of endothelin-1.
Circulation. 2008 Apr 15;117(15):1973-81. doi: 10.1161/CIRCULATIONAHA.107.733212. Epub 2008 Apr 7.
7
Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis.
Mol Genet Metab. 2008 Jun;94(2):204-11. doi: 10.1016/j.ymgme.2008.02.005. Epub 2008 Apr 1.
8
Molecular cloning and biochemical characterization of sialidases from zebrafish (Danio rerio).
Biochem J. 2007 Dec 15;408(3):395-406. doi: 10.1042/BJ20070627.
9
New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy.
Hum Genet. 2007 Mar;121(1):1-22. doi: 10.1007/s00439-006-0280-4. Epub 2006 Nov 7.
10
Sialic acids: fascinating sugars in higher animals and man.
Zoology (Jena). 2004;107(1):49-64. doi: 10.1016/j.zool.2003.10.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验