Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, 1050 Brussels, Belgium.
J Chromatogr A. 2011 Jan 7;1218(1):46-56. doi: 10.1016/j.chroma.2010.10.086. Epub 2010 Oct 30.
The results of a numerical simulation study of the diffusion and retention in fully porous spheres and cylinders are compared with some of the high order accuracy analytical solutions for the effective diffusion coefficient that have been derived from the effective medium theory (EMT) theory in part I of the present study. A variety of different ordered (spheres and cylinders) and disordered (cylinders) packings arrangements has been considered. The agreement between simulations and theory was always excellent, lying within the (very tight) accuracy limits of the simulations over the full range of retention factor and diffusion constant values that is practically relevant for most LC applications. Subsequently filling up the spheres and cylinders with a central solid core, while keeping the same packing geometry and the same mobile phase (same thermodynamic retention equilibrium), it was found that the core induces an additional obstruction which reduces the effective intra-particle diffusion coefficient exactly with a factor γ(part)=2/(2+ρ³) for spherical particles and γ(part)=1/(1+ρ²) for cylinders (ρ is the ratio of the core to the particle diameter, ρ=d(core)/d(part)). These expressions hold independently of the packing geometry, the value of the diffusion coefficients and the equilibrium constant or the size of the core. The expressions also imply that, if considering equal mobile phase conditions, the presence of the solid core will never reduce the particle contribution to the B-term band broadening with more than 33% (50% in case of cylindrical pillars).
本文第一部分推导出了有效扩散系数的高次精度解析解,并通过数值模拟研究了全多孔球体和圆柱体中的扩散和保留情况,将二者进行了对比。我们考虑了各种不同有序(球体和圆柱体)和无序(圆柱体)的堆积排列。模拟与理论之间的一致性总是非常好,在保留因子和扩散常数的整个范围内,模拟结果都在(非常严格的)模拟精度范围内,这在大多数 LC 应用中都是实际相关的。随后,我们在球体和圆柱体中填充了一个中心固体核,同时保持相同的堆积几何形状和相同的流动相(相同的热力学保留平衡),发现核会引起额外的阻碍,这会使有效颗粒内扩散系数降低,对于球体颗粒,降低的因子为γ(part)=2/(2+ρ³),对于圆柱体颗粒,降低的因子为γ(part)=1/(1+ρ²)(ρ 是核与颗粒直径的比值,ρ=d(core)/d(part))。这些表达式独立于堆积几何形状、扩散系数和平衡常数或核的大小。这些表达式还表明,如果考虑相同的流动相条件,固体核的存在绝不会使颗粒对 B 项带宽展宽的贡献降低超过 33%(圆柱支柱的情况下为 50%)。